

Aurelius Atlas Data Governance Solution

Thank you for your interest in Aurelius Atlas Data Governance solution,
powered by Apache Atlas.

Here you will find a step-by-step approach how to deploy, operate and
use Aurelius Atlas, including a demo environment, videos and possible
user stories.

Aurelius Atlas is an open-source solution, which can be used free under
the Elastic V2 license agreement.

What is Aurelius Atlas?

Welcome to the Aurelius Atlas solution powered by Apache Atlas, Aurelius
Atlas is an open-source Data Governance solution, based on a selection
of open-source tools to facilitate business users to access governance
information in an easy consumable way and meet the data governance
demands of the distributed data world.

It is a Data Governance solution powered by Apache Atlas for Data in
motion (in transit), Data in rest, Data in use. It manages distributed
data governance over multicloud environment as well as hybrid (On-Prem)

Components of Aurelius Atlas Helm:

	Apache Atlas [https://atlas.apache.org/#/]

	Kafka UI [https://kafka.apache.org/]

	Apache Flink [https://flink.apache.org/]

	Elasticsearch [https://www.elastic.co/guide/index.html]

	Keycloak [https://www.keycloak.org/documentation]

	API services

The deployment of our solution is provided as a helm chart so you can
roll it out in your Kubernetes cluster.

The solution itself consists of Apache Atlas in the core with Apache
Kafka used in HBase, you also publish and make accessible the original
Apache user interface.

[image: ../_images/k8s.png]
In addition to that we deployed a Keycloack which is our identity
provider it’s open source also, which allows to integrate with all kinds
of other identity providers like in our demo environment which you can
try by Clicking here.

We connect with Gmail, but you can also connect to an active directory
somewhere, on top of that we have our actual user interface, which is
included in what we call the Reverse proxy
port.

This port have a lot of uses for searches and full text search but also
with different facets, for that we are using the Elastic stack, so an
elastic search is and elastic enterprise search and a Kibana just to
manage the environment, we also publish the Kibana interface in this
helm chart, since the synchronization all changes are directly performed
in Apache Atlas but then have to be updated in the elastic environment.

We use Apache Flink and some jobs in there streaming jobs in there to
consume the Kafka events from Apache Atlas and translate that into
changes in the Elastic Enterprise Search environment using these streams
as additional service.

We have rest based services for the data to model and the lineage model
both are related required for the lineage graph generation and we have
the REST API for integrating our solution with infrastructure as code in
an easy way also provided in the image.

Different namespaces on the same cluster for different, independent
deployments.

[image: ../_images/namespaces.png]
It is possible to deploy the helm chart multiple times in different
namespaces, so in our usual environments we have governance set up for
the dev environment for the user acceptance environment, and for the
production environment, they can all run in the same Kubernetes cluster
underneath the same increased controller, and you will always have the
same URLs except that the namespace becomes part of the URL and
everything will be related there.

So, to understand how these different components work together, click
here to go to the technical documentation

If you want to learn more about all the components that made up Aurelius
Atlas, Click here

What do I need to run the application?

To be able to deploy Aurelius Atlas a Kubernetes cluster will be needed.

These are some of the components that you need to run the application,
be sure that you have them, before running the application.

If you do not have it click on the name to go to the external
documentation to set up.

	Apache Atlas [https://atlas.apache.org/#/]

	Kafka UI [https://kafka.apache.org/]

	Apache Flink [https://flink.apache.org/]

	Elasticsearch [https://www.elastic.co/guide/index.html]

	Keycloak [https://www.keycloak.org/documentation]

	API services

If you already have it, you can go directly to the deploy section by
Clicking here.

Integration Options

Aurelius Atlas has different options to integrate here is an overview of
the integration options:

	Identity providers via Keycloak (AAD, gmail,…)

	External* Apache Atlas [https://atlas.apache.org/#/]

	External* Elastic [https://www.elastic.co/guide/index.html]

	External* Kafka [https://kafka.apache.org/20/documentation/]

	Hadoop [https://hadoop.apache.org/docs/stable/]

	Azure [https://docs.microsoft.com/en-us/azure/?product=popular]

	AWS [https://docs.aws.amazon.com/]

Click here to know more about the integration
options.

Deployment options

There are multiple deployment options:

	Helm charts in a kubernetes cluster for Azure

	Helm charts in a kubernetes cluster for Google

	Standalone deployment using docker compose

Azure Deploy Aurelius Atlas

Getting started

Welcome to the Aurelius Atlas solution powered by Apache Atlas! Aurelius
Atlas is an open-source Data Governance solution, based on a selection
of open-source tools to facilitate business users to access governance
information in an easy consumable way and meet the data governance
demands of the distributed data world.

Here you will find the instillation instructions and the required setup
of the kubernetes instructions, followed by how to deploy the chart in
different namespaces.

Installation Requirements

This installation assumes that you have:

	a kubernetes cluster running with 2 Node of CPU 4 and 16GB

	Chosen Azure Cli installed

	az [https://learn.microsoft.com/en-us/cli/azure/install-azure-cli]

	kubectl installed and linked to Azure Cli

	az linked [https://learn.microsoft.com/en-us/azure/aks/learn/quick-kubernetes-deploy-cli#connect-to-the-cluster]

Further you need the helm chart to deploy all services from https://github.com/aureliusenterprise/Aurelius-Atlas-helm-chart

Required Packages

The deployment requires the following packages:

	
	Certificate Manager

	
	To handel and manage the creation of certificates

	Used in demo: cert-manager

	
	Ingress Controller

	
	Used to create an entry point to the cluster through an external IP.

	Used in demo: Nginx Controller

	
	Elastic

	
	Used to deploy elastic on the kubernetes cluster

	In order to deploy elastic, Elastic Cluster on Kubernetes (ECK) must be installed on the cluster. To install ECK on the cluster, please follow the instructions provided on https://www.elastic.co/guide/en/cloud-on-k8s/master/k8s-deploy-eck.html

	
	Reflector

	
	Used to reflect secrets across namespaces

	Used in demo to share the DNS certificate to different namespace

The steps on how to install the required packages

1. Install Certificate manager

Only install if you do not have a certificate manager. Please be aware
if you use another manger, some commands later will need adjustments.
The certificate manager here is
cert-manager [https://cert-manager.io/docs/installation/helm/].

helm repo add jetstack https://charts.jetstack.io
helm repo update
helm install cert-manager jetstack/cert-manager --namespace cert-manager --create-namespace --version v1.9.1 --set installCRDs=true

2. Install Ingress Nginx Controller

Only install if you do not have an Ingress Controller.

helm repo add ingress-nginx https://kubernetes.github.io/ingress-nginx
helm repo update
helm install nginx-ingress ingress-nginx/ingress-nginx --set controller.publishService.enabled=true --set controller.service.annotations."service\.beta\.kubernetes\.io/azure-load-balancer-health-probe-request-path"=/healthz

It is also possible to set a DNS label to the ingress controller if you do not have a DNS by adding --set controller.service.annotations."service\.beta\.kubernetes\.io/azure-dns-label-name"=<label>

3. Install Elastic

kubectl create -f https://download.elastic.co/downloads/eck/2.3.0/crds.yaml
kubectl apply -f https://download.elastic.co/downloads/eck/2.3.0/operator.yaml

4. Install Reflector

helm repo add emberstack https://emberstack.github.io/helm-charts
helm repo update
helm upgrade --install reflector emberstack/reflector

Azure DNS Label

In Azure, it is possible to apply a DNS label to the ingress controller, if you do not have a DNS.

Edit the ingress controller deployment (if not set upon installation)

helm upgrade nginx-ingress ingress-nginx/ingress-nginx --reuse-values --set controller.service.annotations."service\.beta\.kubernetes\.io/azure-dns-label-name"=<label>

Save and exit. Resulting DSN will be
<label>.westeurope.cloudapp.azure.com

Put ssl certificate in a Secret

Before you start, update zookeeper dependencies:

cd charts/zookeeper/
helm dependency update

Define a cluster issuer

This is needed if you installed cert-manager from the required packages.

Here we define a CLusterIssuer using cert-manager on the cert-manager
namespace

	Move to the home directory of the chart helm-governance

	Uncomment templates/prod_issuer.yaml.

	Update the {{ .Values.ingress.email_address }} in values.yaml file and create the ClusterIssuer with the following command

helm template -s templates/prod_issuer.yaml . | kubectl apply -f -

	comment out prod_issuer.yaml in templates Check that it is running:

kubectl get clusterissuer -n cert-manager

	It is running when Ready is True.

[image: ../../_images/letsencrypt.png]

Create ssl certificate

This is needed if you installed cert-manager from the required packages.

	Assumes you have a DNS linked to the external IP of the ingress controller

	Move to the home directory of the chart helm-governance

	Uncomment templates/certificate.yaml

	Update the values.yaml file {{ .Values.ingress.dns_url}} to your DNS name

	Create the certificate with the following command

helm template -s templates/certificate.yaml . | kubectl apply -f -

	Comment out certificate.yaml in templates.

	Check that it is approved.

kubectl get certificate -n cert-manager

It is running when Ready is True

[image: ../../_images/cert_aurelius_dev.png]

Deploy Aurelius Atlas

	Create the namespace

kubectl create namespace <namespace>

	Update the values.yaml file

	{{ .Values.keycloak.keycloakFrontendURL }} replace it to your DNS name

	{{ .Values.kafka-ui.bootstrapServers }} edit it with your <namespace>

	{{ .Values.kafka-ui.SERVER_SERVLET_CONTEXT_PATH }} edit it with your <namespace>

	Deploy the services

cd Aurelius-Atlas-helm-chart
helm dependency update
helm install --generate-name -n <namespace> -f values.yaml .

Users with Randomized Passwords

In the helm chart 5 base users are created with randomized passwords
stored as secrets on kubernetes.

The 5 base users are:

	Keycloak Admin User

	Atlas Admin User

	Atlas Data Steward User

	Atlas Data User

	Elastic User

To get the randomized passwords out of kubernetes there is a bash script
get_passwords.

./get_passwords.sh <namespace>

The above command scans the given <namespace> and prints the
usernames and randomized passwords as follows:

keycloak admin user pwd:
username: admin
vntoLefBekn3L767

keycloak Atlas admin user pwd:
username: atlas
QUVTj1QDKQWZpy27

keycloak Atlas data steward user pwd:
username: steward
XFlsi25Nz9h1VwQj

keycloak Atlas data user pwd:
username: scientist
PPv57ZvKHwxCUZOG
==========
elasticsearch elastic user pwd:
username: elastic
446PL2F2UF55a19haZtihRm5

Check that all pods are running

kubectl -n <namespace> get all # check that all pods are running

Aurelius Atlas is now accessible via reverse proxy at
<DNS-url>/<namespace>/atlas/

Initialize the Atlas flink tasks and optionally load sample data

Flink: - For more details about this flink helm chart look at flink
readme <./charts/flink/README.md>

Init Jobs:

	Create the Atlas Users in Keycloak

	Create the App Search Engines in Elastic

kubectl -n <namespace> exec -it <pod/flink-jobmanager-pod-name> -- bash

cd init
pip3 install m4i-atlas-core@git+https://github.com/aureliusenterprise/m4i_atlas_core.git#egg=m4i-atlas-core --upgrade
cd ../py_libs/m4i-flink-tasks/scripts
/opt/flink/bin/flink run -d -py get_entity_job.py
/opt/flink/bin/flink run -d -py publish_state_job.py
/opt/flink/bin/flink run -d -py determine_change_job.py
/opt/flink/bin/flink run -d -py synchronize_appsearch_job.py
/opt/flink/bin/flink run -d -py local_operation_job.py
To Load the Sample Demo Data
cd
cd init
./load_sample_data.sh

Google Deploy Aurelius Atlas

Getting started

Welcome to the Aurelius Atlas solution powered by Apache Atlas! Aurelius
Atlas is an open-source Data Governance solution, based on a selection
of open-source tools to facilitate business users to access governance
information in an easy consumable way and meet the data governance
demands of the distributed data world.

Here you will find the instillation instructions and the required setup
of the kubernetes instructions, followed by how to deploy the chart in
different namespaces.

Installation Requirements

This installation assumes that you have:

	A kubernetes cluster running with 2 Node of CPU 4 and 16GB

	Gcloud Cli installed

	gcloud [https://cloud.google.com/sdk/docs/install#deb]

	kubectl installed and linked to Gcloud Cli

	gcloud linked [https://cloud.google.com/kubernetes-engine/docs/how-to/cluster-access-for-kubectl#gcloud]

	Helm installed locally

	A DomainName

Further you need the helm chart to deploy all services from https://github.com/aureliusenterprise/Aurelius-Atlas-helm-chart

Required Packages

The deployment requires the following packages:

	
	Certificate Manager

	
	To handel and manage the creation of certificates

	Used in demo: cert-manager

	
	Ingress Controller

	
	Used to create an entry point to the cluster through an external IP.

	Used in demo: Nginx Controller

	
	Elastic

	
	Used to deploy elastic on the kubernetes cluster

	In order to deploy elastic, Elastic Cluster on Kubernetes (ECK) must be installed on the cluster. To install ECK on the cluster, please follow the instructions provided on https://www.elastic.co/guide/en/cloud-on-k8s/master/k8s-deploy-eck.html

	
	Reflector

	
	Used to reflect secrets across namespaces

	Used in demo to share the DNS certificate to different namespace

	Zookeeper

The steps on how to install the required packages

1. Install Certificate manager

Only install if you do not have a certificate manager. Please be aware
if you use another manger, some commands later will need adjustments.
The certificate manager here is
cert-manager [https://cert-manager.io/docs/installation/helm/].

helm repo add jetstack https://charts.jetstack.io
helm repo update
helm install cert-manager jetstack/cert-manager --namespace cert-manager --create-namespace --version v1.9.1 --set installCRDs=true --set global.leaderElection.namespace=cert-manager

	It is successful when the output is like this:

NOTES:
cert-manager v1.91 has been deployed successfully

2. Install Ingress Nginx Controller

Only install if you do not have an Ingress Controller.

helm repo add ingress-nginx https://kubernetes.github.io/ingress-nginx
helm repo update
helm install nginx-ingress ingress-nginx/ingress-nginx --set controller.publishService.enabled=true

3. Install Elastic

kubectl create -f https://download.elastic.co/downloads/eck/2.3.0/crds.yaml
kubectl apply -f https://download.elastic.co/downloads/eck/2.3.0/operator.yaml

4. Install Reflector

helm repo add emberstack https://emberstack.github.io/helm-charts
helm repo update
helm upgrade --install reflector emberstack/reflector

5. Update Zookeeper Dependencies

Move to the directory of Aurelius-Atlas-helm-chart

cd charts/zookeeper/
helm dependency update

Get Ingress Controller External IP to link to DNS

Only do this if your ingress controller does not already have a DNS applied.

Get External IP to link to DNS

kubectl get service/nginx-ingress-ingress-nginx-controller

Take the external-IP of the ingress controller Link your DNS to this external IP.

Put ssl certificate in a Secret

Define a cluster issuer

This is needed if you installed letsencrypt from the required packages.

Here we define a CLusterIssuer using letsencrypt on the cert-manager namespace:

	Move to the directory of Aurelius-Atlas-helm-chart

	Uncomment prod_issuer.yaml in templates

	Update {{ .Values.ingress.email_address }} in values.yaml file

	Create the clusterIssuer with the following command

helm template -s templates/prod_issuer.yaml . | kubectl apply -f -

	Comment out prod_issuer.yaml in templates

Check that it is running:

kubectl get clusterissuer -n cert-manager

It is running when Ready is True.

[image: ../../_images/letsencrypt.png]

Create ssl certificate

This is needed if you installed letsencrypt from the required packages.

	Assumes you have a DNS linked to the external IP of the ingress controller

	Move to the directory of Aurelius-Atlas-helm-chart

	Uncomment certificate.yaml in templates

	Update the Values file {{ .Values.ingress.dns_url}} to your DNS name

	Create the certificate with the following command

helm template -s templates/certificate.yaml . | kubectl apply -f -

	Comment out certificate.yaml in templates

Check that it is approved:

kubectl get certificate -n cert-manager

It is running when Ready is True.

[image: ../../_images/cert_aurelius_dev.png]

Deploy Aurelius Atlas

	Update the values.yaml file

	{{ .Values.keycloak.keycloakFrontendURL }} replace it to your DNS name

	{{ .Values.kafka-ui.bootstrapServers }} edit it with your <namespace>

	{{ .Values.kafka-ui.SERVER_SERVLET_CONTEXT_PATH }} edit it with your <namespace>

	Create the namespace

kubectl create namespace <namespace>

	Deploy the services

cd Aurelius-Atlas-helm-chart
helm dependency update
helm install --generate-name -n <namespace> -f values.yaml .

Please note that it can take 5-10 minutes to deploy all services.

Users with Randomized Passwords

In the helm chart 5 base users are created with randomized passwords
stored as secrets on kubernetes.

The 5 base users are:

	Keycloak Admin User

	Atlas Admin User

	Atlas Data Steward User

	Atlas Data User

	Elastic User

To get the randomized passwords out of kubernetes there is a bash script
get_passwords.

./get_passwords.sh <namespace>

The above command scans the given <namespace> and prints the
usernames and randomized passwords as follows:

keycloak admin user pwd:
username: admin
vntoLefBekn3L767

keycloak Atlas admin user pwd:
username: atlas
QUVTj1QDKQWZpy27

keycloak Atlas data steward user pwd:
username: steward
XFlsi25Nz9h1VwQj

keycloak Atlas data user pwd:
username: scientist
PPv57ZvKHwxCUZOG
==========
elasticsearch elastic user pwd:
username: elastic
446PL2F2UF55a19haZtihRm5

kubectl -n <namespace> get all # check that all pods are running

Atlas is now accessible via reverse proxy at
<DNS-url>/<namespace>/atlas/

Initialize the Atlas flink tasks and optionally load sample data

Flink:

	For more details about this flink helm chart look at flinkreadme

Init Jobs:

	Create the Atlas Users in Keycloak

	Create the App Search Engines in Elastic

kubectl -n <namespace> exec -it <pod/flink-jobmanager-pod-name> -- bash

cd init

pip3 install m4i-atlas-core@git+https://github.com/aureliusenterprise/m4i_atlas_core.git#egg=m4i-atlas-core --upgrade

cd ../py_libs/m4i-flink-tasks/scripts

/opt/flink/bin/flink run -d -py get_entity_job.py
/opt/flink/bin/flink run -d -py publish_state_job.py
/opt/flink/bin/flink run -d -py determine_change_job.py
/opt/flink/bin/flink run -d -py synchronize_appsearch_job.py
/opt/flink/bin/flink run -d -py local_operation_job.py

cd init
./load_sample_data.sh

How to deploy Aurelius Atlas with Docker Compose

Getting started

Welcome to Aurelius Atlas, a powerful data governance solution powered by Apache Atlas! Aurelius Atlas leverages a carefully curated suite of open-source tools to provide business users with seamless access to governance information. Our solution is designed to address the evolving demands of data governance in a distributed data environment, ensuring that you can easily consume and utilize valuable governance insights.

This guide provides comprehensive instructions for setting up the Docker Compose deployment and covers various deployment scenarios. You will find step-by-step instructions to configure the required setup and deploy the system.

Description of system

The solution is based on Apache Atlas for metadata management and governance, and Apache Kafka is utilized for communicating changes in the system between different components. A Kafka Web based user interface is made accessible to have easy access to the Apache Kafka system for maintenance and trouble shooting. Additionally, an Apache server is implemented to handle and distribute frontend traffic to the corresponding components. A custom interface has been developed to enable effective search and browsing functionality using full-text search capabilities, leveraging the power of the Elastic stack. This stack includes Elasticsearch, Enterprise Search, and Kibana. Keycloak serves as the identity provider implementing Single Sign On functionality for all Web based user interfaces. Apache Flink is used to facility the creation of metadata to support the search functionality. Thus, Apache Flink runs streaming jobs that consume Kafka events from Apache Atlas and create metadata in Elastic Enterprise Search.

Hardware requirements

	4 CPU cores

	32GB RAM

	100GB DISK

Installation Requirements

To deploy this solution you will need to install the following components:

	docker

	docker compose

Please ensure that you have these components installed on both the host and client machines for a successful deployment

In addition you need the docker compose file from https://github.com/aureliusenterprise/Aurelius-Atlas-docker-compose.

How to connect to the docker-compose environment?

For the client a local machine is required and for the host a VM or local machine can be used. Below we describe some possible scenarios for this deployment

Deployment on local machine

No additional action is required

Deployment on VM with public domain name

Connect to the VM using as destination its public IP

Deployment on VM without public domain name

In this scenario the following additional components are required:

Host:

	ssh server

Client:

	ssh client

To achieve connectivity with the Host and the Client the following steps have to be taken:

	From the client Connect to the Host using as destination the hosts IP address

	Define a ssh tunnel from the client to the host for port 8087

8087 -> 127.0.0.1:8087

	Extend hosts file on the client with the following line (admin right required)

127.0.0.1 localhost localhost4 $EXTERNAL_HOST

This is a representation of the described deployment on VM:

[image: ../../_images/deployment_result.png]

Preparatory Steps

On the host:

	Start docker (admin rights required):

sudo service docker start

	Obtain the IP address or hostname of the host machine’s eth0 interface:

	If deployment is on local machine:

export EXTERNAL_HOST=$(ifconfig eth0 | grep 'inet' | cut \-d: \-f2 | sed \-e 's/.*inet \\([^]*\\).*/\\1/')

	If deployment is on a VM:

export EXTERNAL_HOST={hostname of VM}

	Run the following script:

./retrieve_ip.sh

This script updates the values of $EXTERNAL_HOST within the templates used to generate the necessary configuration files for the various services.

	Grant Elasticsearch sufficient virtual memory to facilitate its startup (admin rights required):

sudo sysctl -w vm.max_map_count=262144

For more details on configuring virtual memory for Elasticsearch, refer to the elastic documentation page [https://www.elastic.co/guide/en/elasticsearch/reference/8.2/vm-max-map-count.html]

Default Users

By default these roles are created in the different services:

	
	Elastic Admin User:

	Username: elastic

Password: elasticpw

	
	Keycloak Admin user:

	Username: admin

Password: admin

	
	Aurelius/Apache Atlas Admin User:

	Username: atlas

Password: 1234

Spin up docker-compose environment

To start up the system, execute the following command on the host.

docker compose up -d

Starting up the system may take several minutes.

This is how the system looks in operational state:

[image: ../../_images/docker_compose_ps.png]
When the Apache Atlas container state changes from starting to healthy, then the system is ready.

You are now able to access Aurelius Atlas at the URL: http://$EXTERNAL_HOST:8087/

[image: ../../_images/frontend.png]
You can find more information about the product in this page [https://www.aurelius-atlas.com/docs/doc-technicall-manual/en/dev/Options/what.html]

Notes

	How to restart Apache Atlas?

docker exec -it atlas /bin/bash
cd /opt/apache-atlas-2.2.0/bin/
python atlas_stop.py
python atlas_start.py

	How to restart reverse proxy?

docker exec -it reverse-proxy /bin/bash
apachectl restart

Technical description

COMING SOON…..

[image: ../_images/4041.jpg]

Aurelius Atlas Backup

Here you will find how to back up Aurelius Atlas for moving instances.

This process will result in zip files of the Apache Atlas data and a Snapshot repository of Elasticsearch indices that can be used for backup and in the case of disaster recover process.

Apache Atlas backup

Apache Atlas Backup Process Overview

[image: ../_images/backup-overview.png]

Acquire access token for Apache Atlas’s admin user

You can use oauth.sh script from https://github.com/aureliusenterprise/Aurelius-Atlas-helm-chart. Example usage:

export ACCESS_TOKEN=$(./oauth.sh --endpoint https://aureliusdev.westeurope.cloudapp.azure.com/demo/auth/realms/m4i/protocol/openid-connect/token \
--client-id m4i_atlas \
--access atlas $ATLAS_USER_PASSWD)

Export data from Apache Atlas

You can use export-atlas.py script, that wraps Apache Atlas’s Export API [https://atlas.apache.org/index.html#/ExportAPI] to export all data from Atlas. Example Usage:

pip install urlpath
python export-atlas.py --token $ACCESS_TOKEN \
--base-url https://aureliusdev.westeurope.cloudapp.azure.com/demo/atlas2/ \
--output out.zip

Import Backup to Atlas Instance

Apache Atlas exposes an Import API from where data is imported from a zip file.
Admin user need rights are needed to use this api.
This command will import a file response.zip in the current directory to a specified atlas instance.

curl -g -X POST -H 'Authorization: Bearer <Bearer-Token>' -H "Content-Type: multipart/form-data" -H "Cache-Control: no-cache" -F data=@response.zip <apache-atlas-url>/api/atlas/admin/import

Elasticsearch backup

For Elasticsearch backup you can use Snapshot and restore API [https://www.elastic.co/guide/en/elasticsearch/reference/current/snapshot-restore.html].

Create a snapshot repository

Create a storage account and a container in Azure

	Go to https://portal.azure.com/

	Go to storage accounts service

[image: ../_images/storage_account_service.png]

	Create a new storage account

[image: ../_images/storage_account_create.png]

	Set the account name. Optionally adjust the redundancy and access tier

[image: ../_images/storage_account_options1.png]
[image: ../_images/storage_account_options2.png]

	Review and create

	Once the account is created, go to Containers tab

[image: ../_images/containers_tab.png]

	Create a new container

[image: ../_images/containers_create1.png]
[image: ../_images/containers_create2.png]

	Go to Access keys tab

[image: ../_images/access_keys_tab.png]

Register a repository

	Access Elastic’s search pod/image, for example:

kubectl -n demo exec -it pod/elastic-search-es-default-0 -- bash

	Configure Elasticsearch’s keystore with values from the Storage account’s Access keys tab.

[image: ../_images/access_keys_values.png]
bin/elasticsearch-keystore add azure.client.default.account
bin/elasticsearch-keystore add azure.client.default.key

	Optionally set a password for the keystore

bin/elasticsearch-keystore passwd

	Reload secure settings

curl -X POST -u "elastic:$ELASTIC_PASSWORD" "https://aureliusdev.westeurope.cloudapp.azure.com/demo/elastic/_nodes/reload_secure_settings?pretty" -H 'Content-Type: application/json' -d "
{
 \"secure_settings_password\": \"$ELASTIC_KEYSTORE_PASSWORD\"
}"

	Create the repository

curl -X PUT -u "elastic:$ELASTIC_PASSWORD" "https://aureliusdev.westeurope.cloudapp.azure.com/demo/elastic/_snapshot/demo_backup?pretty" -H 'Content-Type: application/json' -d "
{
 \"type\": \"azure\",
 \"settings\": {
 \"container\": \"aurelius-atlas-elastic-backup\",
 \"base_path\": \"backups\",
 \"chunk_size\": \"32MB\",
 \"compress\": true
 }
}"

Create a snapshot

curl -X POST -u "elastic:$ELASTIC_PASSWORD" "https://aureliusdev.westeurope.cloudapp.azure.com/demo/elastic/_snapshot/demo_backup/snapshot_2" -H 'Content-Type: application/json' -d '
{
 "indices": ".ent-search-engine-documents-*"
}'

Demo environment

The demo environment is open for anyone who want to try out Aurelius Atlas.

	It can be accessed Clicking here [https://aureliusdev.westeurope.cloudapp.azure.com/demo/auth/]

	If you don’t know how to use it, you have an user guide, Click here [https://docs.models4insight.com/docs/doc-demo-environment/en/latest/contents.html] to access

	Some use cases and how to use the front end can be found Click here [https://docs.models4insight.com/docs/doc-demo-environment/en/latest/Options/story.html] to go to the business user guid

Integrations

COMING SOON…..

[image: ../_images/4041.jpg]

Libraries

Aurelius Atlas

	library

	gitlab/github?

	purpose

	remarks

	m4i_governance_data_quality

	gitlab

	data governance
quality checks

	merge or branches required

	m4i_atlas_core

	github

	
	core entities for apache atlas

	m4i data management

	gitlab

	writing and reading
from kafka and elastic

	many dependencies like confluent kafka and elastic , which are not always required stale branch

	linage_restAPI

	gitlab and github

	backend for publishing
data into atlas
in a simplified way

	in gitlab several unmerged branches

	m4i_data_dictionary_io

	gitlab

	importing Data
Dictionary excels

	main branch is rc_1.0.0. should be changed to main

	Gov UI Backend

	gitlab

	
	backend for providing data for the governance dashboard in old UI; main branch is rc_1.0.0. should be changed to main

	atlas-m4i-connector

	gitlab

	
	integration m4i with atlas; merge required

Models4Insight

	library

	gitlab/github?

	purpose

	remarks

	Models4Insight

	gitlab and github

	Frontend

	gitlab version more up to date then github version; 54 branches! Cleanup required?

	m4i-keycloak-bulma

	gitlab

	keycloak

	templates for M4I

	m4i_analytics_extension

	gitlab

	
	extensions to m4i_analytics

	analytics library

	gitlab and github

	functionality to
interact with m4i

	lot of stuff which is no longer relevant… requires thorough check whether the APIs are still all ok.

	RestApi2

	gitlab

	backend for M4I

	

	RestUser

	gitlab

	keycloak integration
backend for M4I

	

	Data2model backend

	
	
	

	model comparison backend

	
	
	

	Consistency check backend

	
	
	

M4I Atlas Core

Welcome to the M4I Atlas Core library!

This library is designed to streamline your interactions with Aurelius Atlas, providing a comprehensive data object model for all entities related to Aurelius Atlas and a set of functions to facilitate communication with the Aurelius Atlas API.

With this library, you can easily create, retrieve, and manage Atlas entities, enabling a seamless integration with the Aurelius Atlas Data Governance solution.

In this README, you will find detailed instructions on how to install, configure, and use the M4I Atlas Core library to simplify your work with the Aurelius Atlas platform.

	M4I Atlas Core

	Features

	Installation

	Using the Dev Container

	Using the Dev Container with Visual Studio Code

	Using the Dev Container with GitHub Codespaces

	Local installation

	How to use

	Submodules

	Authentication

	Configuration

	Keyloak authentication

	Atlas authentication

	Example Scripts

	Testing

Features

The M4I Atlas Core library offers a comprehensive set of features designed to simplify your interactions with the Aurelius Atlas platform. The main features of the library include:

	A rich data object model for all entities related to Aurelius Atlas

	A set of API functions to facilitate communication with the Apache Atlas API

	A centralized configuration store for managing settings and credentials

Installation

Below are instructions on various ways to install this project.

Using the Dev Container

This project includes a Visual Studio Code development container to simplify the setup process and provide a consistent development environment. You can use the dev container with either Visual Studio Code locally or with GitHub Codespaces.

Using the Dev Container with Visual Studio Code

Note: The following instructions assume that you have already installed Docker [https://www.docker.com/] and Visual Studio Code [https://code.visualstudio.com/].

	Install the Remote Development extension pack [https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.vscode-remote-extensionpack] in Visual Studio Code.

	Open the project folder in Visual Studio Code.

	Press F1 to open the command palette, and then type “Remote-Containers: Open Folder in Container…” and select it from the list. Alternatively, you can click on the green icon in the bottom-left corner of the VS Code window and select “Reopen in Container” from the popup menu.

	VS Code will automatically build the container and connect to it. This might take some time for the first run as it downloads the required Docker images and installs extensions.

	Once connected, you’ll see “Dev Container: M4I Atlas Core Dev Container” in the bottom-left corner of the VS Code window, indicating that you are now working inside the container.

	You’re all set! You can now develop, build, and test the project using the provided development environment.

Using the Dev Container with GitHub Codespaces

Note: GitHub Codespaces is a paid service. At the time of writing, it offers 60 hours of development time for free every month. Use with care.

	Ensure that you have access to GitHub Codespaces [https://github.com/features/codespaces].

	Navigate to the GitHub repository for the project.

	Click the “Code” button and then select “Open with Codespaces” from the dropdown menu.

	Click on the “+ New codespace” button to create a new Codespace for the project.

	GitHub Codespaces will automatically build the container and connect to it. This might take some time for the first run as it downloads the required Docker images and installs extensions.

	Once connected, you’ll see “Dev Container: M4I Atlas Core Dev Container” in the bottom-left corner of the VS Code window, indicating that you are now working inside the container.

	You’re all set! You can now develop, build, and test the project using the provided development environment.

Local installation

If you prefer not to use the dev container, you’ll need to manually set up your development environment. Please follow the instructions below:

Please ensure your Python environment is on version 3.9. Some dependencies do not work with any previous versions of Python.

To install m4i-atlas-core and all required dependencies to your active Python environment, please run the following command from the project root folder:

pip install -e . --user

To install the project including development dependencies, please run the following command:

pip install -e .[dev] --user

How to use

This section provides an overview of how to use the M4I Atlas Core library, including configuration options and example scripts to help you get started.

Submodules

The M4I Atlas Core library consists of several submodules to help you efficiently interact with the Aurelius Atlas platform. Each submodule serves a specific purpose and contains related functionality. Below is a brief description of each submodule:

	api: This submodule provides a set of functions that facilitate communication with the Apache Atlas API. It includes functions for creating, retrieving, updating, and deleting entities, as well as handling relationships, classifications, and other aspects of the Aurelius Atlas platform.

	config: This submodule includes the ConfigStore class, which is responsible for managing configuration settings for the library. It allows you to store, access, and update the configuration settings required to interact with the Atlas API.

	entities: This submodule contains the data objects related to the Apache Atlas API and the Aurelius Atlas metamodel.

Authentication

All Aurelius Atlas API endpoints are protected through Keycloak, which requires a valid authentication token for every request. The `api <./api>`__ module includes functions for retrieving an authentication token from Keycloak. When using API functions, you should pass the authentication token through the access_token parameter.

Here’s an example of how to authenticate an API request:

from m4i_atlas_core import get_entity_by_guid, get_keycloak_token

access_token = get_keycloak_token()

entity = await get_entity_by_guid("1234", access_token=access_token)

Refer to the Configuration section for details on setting up the required parameters for Keycloak authentication.

Configuration

Before you begin using any functions from the library, you will need to configure certain parameters and credentials for Atlas.

In the scripts directory, make a copy of config.sample.py and credentials.sample.py and rename the files to config.py and credentials.py, respectively. Set the configuration parameters and credentials for Atlas as needed.

Note: When using the Dev Container, the sample files are copied for you automatically. However, you will still have to set the configuration parameters yourself.

	Name

	Required

	Description

	atlas.server.url

	True

	The base url for the Apache Atlas API. E.g. https://www.aurelius-atlas.com/api/atlas.

All configuration parameters should to be loaded into the ConfigStore on application startup. Find more detailed documentation about the ``ConfigStore` here. <./config>`__

Keyloak authentication

When using the default Keycloak authentication, the following additional configuration parameters should be provided:

	Name

	Required

	Description

	keycloak.server.url

	True

	The url of the Keycloak server. E.g. https://www.aurelius-atlas.com/auth.

	keycloak.client.id

	True

	The name of the Keycloak client. The default client id is m4i_atlas.

	keycloak.realm.name

	True

	The name of the Keycloak realm. The default realm name is m4i.

	keycloak.client.secret.key

	True

	The public RS256 key associated with the Keycloak realm.

	keycloak.credentials.username

	False

	The username of the Keycloak user. The built-in username is atlas.

	keycloak.credentials.password

	False

	The password of the Keycloak user.

Note: Keycloak credentials for built-in Aurelius Atlas users are automatically generated upon deployment and are available from the deployment log.

Atlas authentication

When Keycloak authentication is disabled, the default Apache Atlas user management system authenticates all requests. In this case, set the following additional configuration parameters:

	Name

	Required

	Description

	atlas.credentials.username

	True

	Your username for Apache Atlas. The built-in username is atlas.

	atlas.credentials.password

	True

	Your password for Apache Atlas.

Example Scripts

The library includes example scripts to demonstrate how to interact with the Atlas API using the provided data object models and functions. These scripts can be found in the scripts directory of the project. Below is a brief overview of some example scripts:

	load_type_defs.py: This script loads the type definitions into Atlas. The main function in load_type_defs.py can be adjusted to determine which set of type definitions to load. Please note that if a subset of the set already exists, the loading of the type definitions will fail.

Testing

This project uses pytest as its unit testing framework. To run the unit tests, please install pytest and then execute the pytest command from the project root folder.

Unit tests are grouped per module. Unit test modules are located in the same folder as their respective covered modules. They can be recognized by the test__ module name prefix, followed by the name of the covered module.

API

This README provides documentation for the M4I Atlas Core api module, which is designed for interacting with the Apache Atlas API and retrieving authentication tokens from Keycloak.

	API

	Features

	How to use

	Submodules

	Atlas

	`create_entities <#create_entities>`__

	`create_glossary <#create_glossary>`__

	`create_glossary_category <#create_glossary_category>`__

	`create_glossary_term <#create_glossary_term>`__

	`create_type_defs <#create_type_defs>`__

	`delete_entity_hard <#delete_entity_hard>`__

	`delete_entity_soft <#delete_entity_soft>`__

	`get_classification_def <#get_classification_def>`__

	`get_entities_by_attribute <#get_entities_by_attribute>`__

	`get_entities_by_type_name <#get_entities_by_type_name>`__

	`get_entity_audit_events <#get_entity_audit_events>`__

	`get_entity_by_guid <#get_entity_by_guid>`__

	`get_glossary_by_guid <#get_glossary_by_guid>`__

	`get_glossary_category_by_guid <#get_glossary_category_by_guid>`__

	`get_glossary_term_by_guid <#get_glossary_term_by_guid>`__

	`get_glossary <#get_glossary>`__

	`get_lineage_by_guid <#get_lineage_by_guid>`__

	`get_lineage_by_qualified_name <#get_lineage_by_qualified_name>`__

	`get_type_def <#get_type_def>`__

	`get_type_defs <#get_type_defs>`__

	`update_type_defs <#update_type_defs>`__

	Working with the cache

	Auth

	Usage

	Configuration

Features

The API module contains a set of functions that facilitate communication with the Apache Atlas API. These functions provide a convenient and efficient way to interact with the Aurelius Atlas platform. The main features of the API module include:

	Functions for creating, retrieving, updating, and deleting Atlas entities

	Functions for managing entity relationships and classifications

	Support for bulk operations, such as bulk entity creation and deletion

	Error handling and response parsing for API interactions

How to use

To use any of the API functions, import them directly from the library:

from m4i_atlas_core import create_entities, create_glossary, ...

Submodules

The API module is divided into two submodules:

	`atlas <#atlas>`__: This submodule contains functions for interacting with the Apache Atlas API, enabling you to create, read, update, and delete entities and their related metadata.

	`auth <#auth>`__: This submodule is responsible for retrieving authentication tokens from Keycloak, which are required for accessing and utilizing the Apache Atlas API.

Atlas

The atlas submodule provides a collection of functions to interact with the Apache Atlas API. These functions enable you to create, retrieve, update, and delete various entities, types, and glossaries in Apache Atlas.

The API functions make extensive use of the data object model included with this library, which corresponds to the data object model for the Apache Atlas API. You can find the official Apache Atlas API documentation at this link [https://atlas.apache.org/api/v2/index.html].

The following sections include examples demonstrating how to use each API function.

create_entities

The create_entities function allows you to create or update multiple entities in Apache Atlas in bulk. It takes in a variable number of Entity objects and an optional dictionary of referred entities. It also accepts an optional access token for authentication purposes.

Here’s an example of how to use the create_entities function:

from m4i_atlas_core import Entity, create_entities

entity1 = Entity(...)
entity2 = Entity(...)

mutations = await create_entities(entity1, entity2)

print(mutations)

This example creates the two given entities in Apache Atlas. The create_entities function returns an EntityMutationResponse object containing the details of the entities created or updated.

create_glossary

The create_glossary function allows you to create a new glossary in Apache Atlas. It takes in a Glossary object and an optional access token for authentication purposes.

Here’s an example of how to use the create_glossary function:

from m4i_atlas_core import Glossary, create_glossary

glossary = Glossary(...)

created_glossary = await create_glossary(glossary)

print(created_glossary)

This example creates the given glossary in Apache Atlas. The create_glossary function returns a Glossary object containing the details of the created glossary.

create_glossary_category

The create_glossary_category function allows you to create a new glossary category in Apache Atlas. It takes in a GlossaryCategory object and an optional access token for authentication purposes.

Here’s an example of how to use the create_glossary_category function:

from m4i_atlas_core import GlossaryCategory, create_glossary_category

category = GlossaryCategory(...)

created_category = await create_glossary_category(category)

print(created_category)

This example creates the given glossary category in Apache Atlas. The create_glossary_category function returns a GlossaryCategory object containing the details of the created category.

create_glossary_term

The create_glossary_term function allows you to create a new glossary term in Apache Atlas. It takes in a GlossaryTerm object and an optional access token for authentication purposes.

Here’s an example of how to use the create_glossary_term function:

from m4i_atlas_core import GlossaryTerm, create_glossary_term

term = GlossaryTerm(...)

created_term = await create_glossary_term(term)

print(created_term)

This example creates the given glossary term in Apache Atlas. The create_glossary_term function returns a GlossaryTerm object containing the details of the created term.

create_type_defs

The create_type_defs function allows you to create multiple new type definitions in Apache Atlas in bulk. It takes in a TypesDef object and an optional access token for authentication purposes.

Note: Only new definitions will be created, and any changes to the existing definitions will be discarded.

Here’s an example of how to use the create_type_defs function:

from m4i_atlas_core import TypesDef, EntityDef, create_type_defs

entity_def = EntityDef(...)

types_def = TypesDef(
 entity_defs=[entity_def]
)

created_type_defs = await create_type_defs(types_def)

print(created_type_defs)

This example creates the given entity definition in Apache Atlas. The create_type_defs function returns a TypesDef object containing lists of type definitions that were successfully created.

delete_entity_hard

The delete_entity_hard function allows you to permanently delete one or more entities from Apache Atlas by their guid. This operation removes the entities from the database completely.

It takes in a list of guid strings and an optional access token for authentication purposes.

Note: This API requires elevated user permissions.

Here’s an example of how to use the delete_entity_hard function:

from m4i_atlas_core import delete_entity_hard

guids = ["1234-5678-90ab-cdef", "abcd-efgh-ijkl-mnop"]

mutations = await delete_entity_hard(guids)

print(mutations)

This example permanently deletes the entities with the given guids from Apache Atlas. The delete_entity_hard function returns an EntityMutationResponse object containing the details of the deleted entities.

delete_entity_soft

The delete_entity_soft function allows you to mark an entity as deleted in Apache Atlas without completely removing it from the database. The entity’s status is set to DELETED. It takes in the guid of the entity and an optional access token for authentication purposes.

Here’s an example of how to use the delete_entity_soft function:

from m4i_atlas_core import delete_entity_soft

guid = "1234-5678-90ab-cdef"

mutations = await delete_entity_soft(guid)

print(mutations)

This example marks the entity with the given guid as deleted in Apache Atlas. The delete_entity_soft function returns an EntityMutationResponse object containing the details of the deleted entity.

get_classification_def

The get_classification_def function allows you to retrieve a classification definition from Apache Atlas based on its type name. It takes in the type_name of the classification and an optional access token for authentication purposes.

Note: This function is cached, meaning that repeated calls with the same parameters will return the cached result rather than making additional requests to the server.

Here’s an example of how to use the get_classification_def function:

from m4i_atlas_core import get_classification_def

type_name = "example_classification"

classification_def = await get_classification_def(type_name)

print(classification_def)

This example retrieves the classification definition with the given type_name from Apache Atlas. The get_classification_def function returns a ClassificationDef object containing the details of the classification definition.

get_entities_by_attribute

The get_entities_by_attribute function allows you to retrieve entities from Apache Atlas based on a specified attribute search query. It takes in the attribute_name, attribute_value, and type_name as search parameters, and an optional access token for authentication purposes.

Note: This function is cached, meaning that repeated calls with the same parameters will return the cached result rather than making additional requests to the server.

Keep in mind that this search only returns entity headers, which include the guid and type_name of the actual entity. You can use these headers to query the entities API for more information.

Here’s an example of how to use the get_entities_by_attribute function:

from m4i_atlas_core import get_entities_by_attribute

attribute_name = "example_attribute"
attribute_value = "example_value"
type_name = "example_type"

search_result = await get_entities_by_attribute(attribute_name, attribute_value, type_name)

print(search_result)

This example retrieves the entities with the given attribute and type from Apache Atlas. The get_entities_by_attribute function returns a SearchResult object containing the details of the entity headers that match the search query.

get_entities_by_type_name

The get_entities_by_type_name function allows you to search for all entities in Apache Atlas whose type matches the given type_name. It takes in the type_name, an optional limit and offset for pagination, and an optional access token for authentication purposes.

Note: This function is cached, meaning that repeated calls with the same parameters will return the cached result rather than making additional requests to the server.

Keep in mind that this search only returns entity headers, which include the guid and type_name of the actual entity. You can use these headers to query the entities API for more information.

Here’s an example of how to use the get_entities_by_type_name function:

from m4i_atlas_core import get_entities_by_type_name

type_name = "example_type"

entities = await get_entities_by_type_name(type_name)

print(entities)

This example retrieves all entities with the given type from Apache Atlas. The get_entities_by_type_name function returns a list of EntityHeader objects containing the details of the entity headers that match the search query.

get_entity_audit_events

The get_entity_audit_events function allows you to fetch all audit events for an entity in Apache Atlas based on its guid. It takes in the entity_guid and an optional access token for authentication purposes.

Note: This function is cached, meaning that repeated calls with the same parameters will return the cached result rather than making additional requests to the server.

Here’s an example of how to use the get_entity_audit_events function:

from m4i_atlas_core import get_entity_audit_events

entity_guid = "example_guid"

audit_events = await get_entity_audit_events(entity_guid)

print(audit_events)

This example fetches all audit events for the entity with the given guid from Apache Atlas. The get_entity_audit_events function returns a list of EntityAuditEvent objects containing the details of the audit events associated with the entity.

get_entity_by_guid

The get_entity_by_guid function allows you to fetch the complete definition of an entity in Apache Atlas based on its guid. It takes in the guid and an optional entity_type, which can be a string or an object of type T, where T is a subclass of Entity.

You can also provide optional parameters like ignore_relationships and min_ext_info to customize the results, as well as an optional access token for authentication purposes.

Note: This function is cached, meaning that repeated calls with the same parameters will return the cached result rather than making additional requests to the server.

Here’s an example of how to use the get_entity_by_guid function:

from m4i_atlas_core import Entity, get_entity_by_guid

guid = "example_guid"

entity = await get_entity_by_guid(guid, Entity)

print(entity)

This example fetches the complete definition of the entity with the given guid from Apache Atlas. The get_entity_by_guid function returns an Entity object containing the details of the entity. If the entity_type parameter is provided, the function will return an instance of that type.

get_glossary_by_guid

The get_glossary_by_guid function allows you to fetch a glossary in Apache Atlas based on its guid. It takes in the guid of the glossary and an optional access token for authentication purposes.

Note: This function is cached, meaning that repeated calls with the same parameters will return the cached result rather than making additional requests to the server.

Here’s an example of how to use the get_glossary_by_guid function:

from m4i_atlas_core import get_glossary_by_guid

guid = "example_glossary_guid"

glossary = await get_glossary_by_guid(guid)

print(glossary)

This example fetches the glossary with the given guid from Apache Atlas. The get_glossary_by_guid function returns a Glossary object containing the details of the glossary.

get_glossary_category_by_guid

The get_glossary_category_by_guid function allows you to fetch a glossary category in Apache Atlas based on its guid. It takes in the guid of the glossary category and an optional access token for authentication purposes.

Note: This function is cached, meaning that repeated calls with the same parameters will return the cached result rather than making additional requests to the server.

Here’s an example of how to use the get_glossary_category_by_guid function:

from m4i_atlas_core import get_glossary_category_by_guid

guid = "example_glossary_category_guid"

glossary_category = await get_glossary_category_by_guid(guid)

print(glossary_category)

This example fetches the glossary category with the given guid from Apache Atlas. The get_glossary_category_by_guid function returns a GlossaryCategory object containing the details of the glossary category.

get_glossary_term_by_guid

The get_glossary_term_by_guid function allows you to fetch a glossary term in Apache Atlas based on its guid. It takes in the guid of the glossary term and an optional access token for authentication purposes.

Note: This function is cached, meaning that repeated calls with the same parameters will return the cached result rather than making additional requests to the server.

Here’s an example of how to use the get_glossary_term_by_guid function:

from m4i_atlas_core import get_glossary_term_by_guid

guid = "example_glossary_term_guid"

glossary_term = await get_glossary_term_by_guid(guid)

print(glossary_term)

This example fetches the glossary term with the given guid from Apache Atlas. The get_glossary_term_by_guid function returns a GlossaryTerm object containing the details of the glossary term.

get_glossary

The get_glossary function allows you to fetch all glossaries in Apache Atlas with optional pagination and sorting. The function takes in an optional limit, offset, and sort order, as well as an optional access token for authentication purposes.

Note: This function is cached, meaning that repeated calls with the same parameters will return the cached result rather than making additional requests to the server.

Here’s an example of how to use the get_glossary function:

from m4i_atlas_core import get_glossary

limit = 10
offset = 0
sort = 'ASC'

glossaries = await get_glossary(limit=limit, offset=offset, sort=sort)

for glossary in glossaries:
 print(glossary)

This example fetches glossaries from Apache Atlas using the specified pagination and sorting options. The get_glossary function returns a list of Glossary objects containing the details of the glossaries.

get_lineage_by_guid

The get_lineage_by_guid function allows you to fetch the lineage of an entity in Apache Atlas given its guid.

It takes in the guid of the entity, the maximum number of hops to traverse the lineage graph using the depth parameter (default is 3), the direction parameter to specify whether to retrieve input lineage, output lineage or both (default is both), and an optional access token for authentication purposes.

Note: This function is cached, meaning that repeated calls with the same parameters will return the cached result rather than making additional requests to the server.

Here’s an example of how to use the get_lineage_by_guid function:

from m4i_atlas_core import LineageDirection, get_lineage_by_guid

guid = "12345"
depth = 3
direction = LineageDirection.BOTH

lineage_info = await get_lineage_by_guid(guid, depth=depth, direction=direction)

print(lineage_info)

This example fetches the lineage of the entity with the given guid from Apache Atlas. The get_lineage_by_guid function returns a LineageInfo object containing the details of the entity’s lineage.

get_lineage_by_qualified_name

The get_lineage_by_qualified_name function allows you to fetch the lineage of an entity in Apache Atlas given its qualified_name and type_name.

It takes in the qualified_name and type_name of the entity, the maximum number of hops to traverse the lineage graph using the depth parameter (default is 3), the direction parameter to specify whether to retrieve input lineage, output lineage or both (default is both), and an optional access token for authentication purposes.

Note: This function is cached, meaning that repeated calls with the same parameters will return the cached result rather than making additional requests to the server.

Here’s an example of how to use the get_lineage_by_qualified_name function:

from m4i_atlas_core import LineageDirection, get_lineage_by_qualified_name

qualified_name = "example.qualified.name"
type_name = "example_type_name"
depth = 3
direction = LineageDirection.BOTH

lineage_info = await get_lineage_by_qualified_name(qualified_name, type_name, depth=depth, direction=direction)

print(lineage_info)

This example fetches the lineage of the entity with the given qualified_name and type_name from Apache Atlas. The get_lineage_by_qualified_name function returns a LineageInfo object containing the details of the entity’s lineage.

get_type_def

The get_type_def function allows you to retrieve an entity type definition from Apache Atlas based on its name. It takes in the input_type of the entity and an optional access token for authentication purposes.

Note: This function is cached, meaning that repeated calls with the same parameters will return the cached result rather than making additional requests to the server.

Here’s an example of how to use the get_type_def function:

from m4i_atlas_core import get_type_def

input_type = "example_entity_type"

entity_def = await get_type_def(input_type)

print(entity_def)

This example retrieves the entity type definition with the given input_type from Apache Atlas. The get_type_def function returns an EntityDef object containing the details of the entity type definition.

get_type_defs

The get_type_defs function allows you to retrieve all type definitions in Apache Atlas. It takes an optional access token for authentication purposes.

Note: This function is cached, meaning that repeated calls with the same parameters will return the cached result rather than making additional requests to the server.

Here’s an example of how to use the get_type_defs function:

from m4i_atlas_core import get_type_defs

type_defs = await get_type_defs()

print(type_defs)

This example retrieves all type definitions from Apache Atlas. The get_type_defs function returns a TypesDef object containing the details of the type definitions.

update_type_defs

The update_type_defs function allows you to bulk update all Apache Atlas type definitions. Existing definitions will be overwritten, but the function will not create any new type definitions.

It takes a types parameter, which is a TypesDef object containing the type definitions to be updated, and an optional access token for authentication purposes.

Here’s an example of how to use the update_type_defs function:

from m4i_atlas_core import EntityDef, TypesDef, update_type_defs

entity_def = EntityDef(
 category="ENTITY",
 name="example_entity",
 description="An example entity definition"
)

types = TypesDef(entityDefs=[entity_def])

updated_type_defs = await update_type_defs(types)

print(updated_type_defs)

This example updates an existing entity definition with the given types parameter in Apache Atlas. The update_type_defs function returns a TypesDef object containing the details of the type definitions that were successfully updated.

Working with the cache

The library utilizes the `aiocache <https://aiocache.aio-libs.org/en/latest/>`__ library to cache some API function results. Caching can help reduce server load and improve performance by reusing the results from previous API calls with the same parameters.

When you call a cached API function, the cache is automatically checked for the result. If the result is present in the cache, it is returned instead of making a new API call.

from m4i_atlas_core import get_entity_by_guid

Call the function once, making an API call
await get_entity_by_guid("12345")

Call the function again, returning the result from the cache
await get_entity_by_guid("12345")

Bypass the cache and make a direct API call
await get_entity_by_guid("12345", cache_read=False)

You can interact with the cache for any API function using the cache property. The following examples demonstrate how to access and manipulate the cache for the get_entity_by_guid function:

from m4i_atlas_core import get_entity_by_guid

Access the cache for the get_entity_by_guid function
cache = get_entity_by_guid.cache

Delete an item from the cache
await cache.delete("12345")

Clear the entire cache
await cache.clear()

These cache management options enable you to control and optimize the caching behavior of your application, tailoring it to your specific use case.

Auth

The auth submodule provides functionality for retrieving authentication tokens from Keycloak, which are required for accessing the Apache Atlas API.

Note: This module is specifically designed for use with Keycloak authentication. When Apache Atlas is configured with basic authentication, obtaining access tokens is not required. Instead, set a username and password in the ConfigStore for authentication.

Usage

The get_keycloak_token function in the Auth submodule is responsible for retrieving an access token from a Keycloak instance.

To use the get_keycloak_token function, first import it:

from m4i_atlas_core import get_keycloak_token

Next, call the function to retrieve an access token. You can provide your own Keycloak instance and credentials or rely on the pre-configured parameters from the ConfigStore as described in the configuration section. If you need to use multi-factor authentication, provide the one-time access token (TOTP) as well.

Example: Using pre-configured parameters
access_token = get_keycloak_token()

Example: Using custom Keycloak instance and credentials
access_token = get_keycloak_token(keycloak=my_keycloak_instance, credentials=("my_username", "my_password"))

Example: Using multi-factor authentication (TOTP)
access_token = get_keycloak_token(totp="123456")

The access_token can then be used to authenticate requests to the Apache Atlas API.

Note: Tokens obtained from Keycloak have a limited lifespan. Once a token expires, you will need to obtain a new access token to continue making authenticated requests.

Configuration

The get_keycloak_token function relies on the following values from the ConfigStore:

	Key

	Description

	Required

	keycloak.server.url

	The url of the Keycloak server. In case of a local connection, this includes the hostname and the port. E.g. http://localhost:8180/auth. In case of an external connection, provide a fully qualified domain name. E.g. https://www.models4insight.com/auth.

	True

	keycloak.client.id

	The name of the Keycloak client.

	True

	keycloak.realm.name

	The name of the Keycloak realm.

	True

	keycloak.client.secret.key

	The public RS256 key associated with the Keycloak realm.

	True

	keycloak.credentials.username

	The username of the Keycloak user.

	False

	keycloak.credentials.password

	The password of the Keycloak user.

	False

Please find more detailed documentation about ``ConfigStore` here. <./config>`__

ConfigStore

ConfigStore is a powerful, singleton-based configuration store providing an easy-to-use interface to store, retrieve, and manage configuration settings.

	ConfigStore

	Features

	How to use

	Initializing the ConfigStore

	Storing Configuration Settings

	Retrieving Configuration Settings

	Resetting the ConfigStore

	Error Handling

Features

	Singleton-based implementation ensures a single source of truth for your configuration settings.

	Ability to load your configuration settings on application start.

	Easy storage and retrieval of configuration settings using simple get and set methods.

	Support for default values and required settings.

	Bulk retrieval and storage of settings using get_many and set_many methods.

How to use

Please find examples of how to use the ConfigStore below.

Initializing the ConfigStore

To start using the ConfigStore, first import the necessary components and initialize the singleton instance:

from config import config
from credentials import credentials

from config_store import ConfigStore

store = ConfigStore.get_instance()
store.load({
 **config,
 **credentials
})

In this example, the config.py and credentials.py files are imported to obtain the necessary configuration parameters and credentials. The ConfigStore is then initialized using the get_instance() method, and the configuration and credential dictionaries are merged and loaded into the ConfigStore using the load() method.

Note: It is recommended to initialize the ConfigStore once when the application starts.

Storing Configuration Settings

To store a configuration setting, use the set method:

store.set("key", "value")

To store multiple configuration settings at once, use the set_many method:

store.set_many(key1="value1", key2="value2", key3="value3")

Retrieving Configuration Settings

To retrieve a configuration setting, use the get method. If the key is not present in the ConfigStore, it returns None by default.

value = store.get("key")

You can also provide a default value if the key is not found:

value = store.get("key", default="default_value")

If a key is required and not found in the ConfigStore, you can raise a MissingRequiredConfigException by setting the required parameter to True:

value = store.get("key", required=True)

To retrieve multiple configuration settings at once, use the get_many method:

key1, key2, key3 = store.get_many("key1", "key2", "key3")

You can also provide default values and required flags for the keys:

defaults = {"key1": "default_value1", "key2": "default_value2"}
required = {"key1": True, "key2": False}

key1, key2, key3 = store.get_many("key1", "key2", "key3", defaults=defaults, required=required)

If all keys are required, you can use the all_required parameter as a shorthand:

key1, key2, key3 = store.get_many("key1", "key2", "key3", all_required=True)

Resetting the ConfigStore

To reset the ConfigStore and remove all stored configuration settings, use the reset method:

store.reset()

This will clear the ConfigStore and reset it to an empty state.

Error Handling

The ConfigStore raises a MissingRequiredConfigException when a required key is not found and no default value has been provided. This exception can be caught and handled as needed in your application:

from m4i_atlas_core import MissingRequiredConfigException

try:
 value = store.get("key", required=True)
except MissingRequiredConfigException as ex:
 # Handle the case of a missing configuration

Data Object Model

This section provides an overview of how to use the data object model provided in the library. The data objects are designed to represent various types of entities, attributes, classifications, and other components in Aurelius Atlas. They are used extensively when interacting with the Atlas API.

	Data Object Model

	Features

	How to use

	Submodules

	Serialization and deserialization

	From JSON to Instance

	Unmapped attributes

	From Instance to JSON

	Marshmallow Schema

	Data Validation

	Bulk Serialization and Deserialization

Features

The entities module provides a collection of data objects designed to represent different types of entities, attributes, classifications, and other components in Aurelius Atlas. The main features of the entities module include:

	Data objects related to the Apache Atlas API

	Data objects related to the Aurelius Atlas metamodel

	Convenience methods for converting data objects to and from JSON format

	Marshmallow schemas for data validation, serialization, and deserialization

How to use

To use the data objects from the library in your code, you can easily import them. For example, if you want to work with the Entity data object, you can import it as follows:

from m4i_atlas_core import Entity

Once you have imported the desired data object, you can create instances, access their properties, and manipulate them as needed.

Submodules

The entities module is organized into two main submodules:

	core: This submodule includes data objects that correspond to the Apache Atlas API. These objects are used for representing entities, classifications, relationships, and other components as defined in Apache Atlas.

	data_dictionary: This submodule contains data objects that are specific to the Aurelius Atlas metamodel. These objects extend or customize the core data objects to better suit the requirements of the Aurelius Atlas platform.

Serialization and deserialization

Each data object is a `dataclass <https://docs.python.org/3/library/dataclasses.html>`__ and is designed to be easily serialized and deserialized using the `dataclasses_json <https://lidatong.github.io/dataclasses-json/>`__ library. This allows for convenient conversion between JSON and the corresponding data object instances.

The dataclasses_json library provides additional features such as camelCase letter conversion and other customizations.

Below are some examples of how to use a data object, such as BusinessDataDomain, to convert between its instance and JSON representation.

From JSON to Instance

You can convert JSON data to an Entity instance using the from_json() method. Suppose you have the following JSON representation of a data domain:

{
 "attributes": {
 "key": "value",
 "name": "example",
 "qualifiedName": "data-domain--example"
 },
 "guid": "12345",
 "typeName": "m4i_data_domain"
}

The example below demonstrates how to create a BusinessDataDomain instance from the given JSON data:

from m4i_atlas_core import BusinessDataDomain

json_data = '''JSON string here'''
domain_instance = BusinessDataDomain.from_json(json_data)

Unmapped attributes

In the given example, the key attribute is not explicitly defined as part of the schema for BusinessDataDomain. In such cases, the attributes field of the resulting instance will include an unmapped_attributes field. This field offers flexibility when working with entities containing additional or custom attributes not specified in the predefined data model. The unmapped_attributes field acts as a catch-all for these attributes, ensuring they are preserved during the conversion process between JSON and the Entity instance.

To access an unmapped attribute, you can use the following code:

value = domain_instance.attributes.unmapped_attributes["key"]

When converting any Entity instance back to JSON, the unmapped attributes will be included as part of the attributes field once again.

From Instance to JSON

To convert an Entity instance back to its JSON representation, use the to_json() method. The example below shows how to convert the BusinessDataDomain instance we created previously back to its JSON representation:

json_data = domain_instance.to_json()

This will return a JSON string that represents the data domain instance, including any unmapped attributes.

Marshmallow Schema

Each data object in the library is equipped with a built-in Marshmallow schema. These schemas are valuable tools for validating, serializing, and deserializing complex data structures. By utilizing Marshmallow schemas, you can ensure that the data being passed to or returned from the API adheres to the correct structure and data types.

To access the Marshmallow schema for any data object, use the schema() method:

from m4i_atlas core import Entity

schema = Entity.schema()

Data Validation

Marshmallow schemas associated with the data objects in this library can be employed to perform data validation. The following example demonstrates how to use a Marshmallow schema to validate JSON input data:

from m4i_atlas_core import Entity

Load the schema for the Entity data object
entity_schema = Entity.schema()

Validate input data
input_data = {
 "guid": "123",
 "created_by": "user",
 "custom_attributes": {"key": "value"},
}

errors = entity_schema.validate(input_data)

if errors:
 print(f"Validation errors: {errors}")
else:
 print("Data is valid")

In this example, the Entity data object from the library is used to validate the input_data JSON using its associated Marshmallow schema. If the data is valid, the validate method will not return any errors, and the “Data is valid” message will be displayed. If the data is invalid, a dictionary containing the validation errors will be returned.

This approach can be applied to other data objects in the library for validating JSON input data using their respective Marshmallow schemas. To read more about data validation with Marshmallow, refer to the official documentation [https://marshmallow.readthedocs.io/en/stable/quickstart.html#validation].

Bulk Serialization and Deserialization

Marshmallow schemas can be utilized for bulk serialization and deserialization of complex data structures. This is particularly useful when working with lists of data objects.

To serialize a list of data objects into a JSON format, you can use the dump method with the many=True option:

from m4i_atlas_core import Entity

Sample list of Entity data objects
entities = [
 Entity(guid="1", created_by="user1", custom_attributes={"key1": "value1"}),
 Entity(guid="2", created_by="user2", custom_attributes={"key2": "value2"}),
]

Load the schema for the Entity data object
entity_schema = Entity.schema()

Serialize the list of entities
serialized_data = entity_schema.dump(entities, many=True)

print("Serialized data:", serialized_data)

To deserialize a JSON list of data objects, you can use the load method with the many=True option:

from m4i_atlas_core import Entity

Sample JSON list of entity data
json_data = [
 {"guid": "1", "created_by": "user1", "custom_attributes": {"key1": "value1"}},
 {"guid": "2", "created_by": "user2", "custom_attributes": {"key2": "value2"}},
]

Load the schema for the Entity data object
entity_schema = Entity.schema()

Deserialize the JSON list of entities
deserialized_data = entity_schema.load(json_data, many=True)

print("Deserialized data:", deserialized_data)

In both examples, the many=True option is specified to indicate that the data being processed is a list. You can apply the same approach with other data objects in the library to perform bulk serialization and deserialization using their corresponding Marshmallow schemas.

Data Quality

Is used to determine the quality of various entities already loaded into DMP’s governance tool - Apache Atlas.
It verifies data loaded against various m4i types (like m4i_data_domain, m4i_data_entity) on quality measures like completeness, uniqueness etc.

There are two main categories of Data that is generated for each m4i Type entity.

	Attributes related data
consists of details about entity attributes where certain quality metrics can be applied like

	completeness – whether we have a value for an attribute

	uniqueness – whether values are unique for different entities

	Relationships related data
consists of details about entity relationships where certain quality metrics can be applied like

	completeness – whether we have correct relationships between two entities.

These rules are inherited from m4i_data_management repository.

Configuring Rules

An important aspect of Data Quality is the rules that are applied to each entity.
There are separate rules for attributes and relationships. However, the structure is same and follows as below.

id: id

expressionVersion: version of expression

expression: expression to evaluate completeness(‘name’)

qualifiedName: unique name for the rule example:m4i_data_domain–name

qualityDimension: Rule Category - explained below

ruleDescription: Description of the rule ex:name is not None and is not empty

active: 0 | 1

type: attribute | relationship

	Rule Category

	Rule Description

	completeness

	degree to which data is not null

	accuracy

	degree to which a column conforms
to a standard

	validity

	degree to which the data comply
with a predefined structure

	uniqueness

	degree to which the data has a
unique value

	timeliness

	the data should be up to date

Example

id: 1

expressionVersion: 1

expression: completeness(‘name’)

qualifiedName: m4i_data_domain–name

qualityDimension: completeness

ruleDescription: name is not None and is not empty

active: 1

type: attribute

Rules are maintained in rules directory of the package and can be found for each m4i type.

Running the code

We can execute run.py file. This will generates 6 files in output folder of the package. Three each for attributes
and relationships. In addition, generated data is pushed to Elasticsearch indexes. We can configure pre-fix of indexes by updating
elastic_index_prefix for both attributes and relationships related data.

	Summary – gives a summary of the data quality results.

	Complaint Data – gives information about complaints.

	Non-complaint Data – gives information about non-complaints.

Dependency

To Run this package, we need to have below packages installed
* m4i_atlas_core – communicates with Apache Atlas
* vox-data-management – communicates for Quality metric already defined
* elasticsearch – communicates with ElasticSearch

Installation

Please ensure your Python environment is set on version 3.7. Some dependencies do not work with any later versions of Python.
Basically, this is a requirement for underlying package m4i_data_management

To install m4i-atlas-core and all required dependencies to your active Python environment. Activate it using:

source <venv_name>binactivate or create new python3.7 -m venv <venv_name>

Configurations and Credentials

Please make a copy of config.sample.py and credentials.sample.py and rename the files to config.py and credentials.py respectively.
Please set the configuration parameters and credentials for atlas and elastic as below.

credentials.py
Should contain two dictionaries viz credential_atlas and credential_elastic

	Name

	Description

	credential_atlas[atlas.credentials.username]

	The Username to be used to access the Atlas Instance.

	credential_atlas[atlas.credentials.password]

	The Password to be used to access the Atlas Instance must
correspond to the Username given.

	credential_elastic[elastic_cloud_id]

	Service URL for Elastic.

	credential_elastic[elastic_cloud_username]

	The Username to be used to access the Elastic Instance.

	credential_elastic[elastic_cloud_password]

	The Password to be used to access the Elastic Instance must
correspond to the Username given.

config.py
Should contain two dictionaries viz config_elastic and config_atlas

	Name

	Description

	config_elastic[elastic_index_prefix]

	Define prefix for the elastic Index where data will be pushed to

	config_atlas[atlas.server.url]

	The Server URL that Atlas runs on, with /api/atlas post fix.

	config_atlas[atlas.credentials.token]

	Add Keycloak access token

Execution

	Create the Python Environment. How to do this can be found in this file under Installation

	Fill in the Configurations and Credentials as indicated in this file under Configurations and Credentials

3. Run scriptsrun.py to create 6 files in output folder, 3 each for Attributes and Relationships. Same data is also
pushed to Elastic.

	creates/updates an index for attributes as `<prefix>`_quality_attr_[summary | complaint | non_complaint]

	creates/updates an index for relationships as `<prefix>`_quality_rels_[summary | complaint | non_complaint]

M4I Data Management

This library contains all core functionality around data management for Models4Insight.

Installation

Please ensure your Python environment is on version 3.7. Some dependencies do not work with any later versions of Python.

To install m4i-data-management and all required dependencies to your active Python environment, please run the following command from the project root folder:

1)Set up a virtual environment: Use this command in the root folder,

virtualenv --python "C:\\Python37\\python.exe" venv.

2) Then activate the virtual enviroment with this command:

.\env\Scripts\activate

3) Install the library

pip install -e .

To install `m4i-data-management` including development dependencies, please run the following command instead:

pip install -e .[dev]

Install m4i_data_management:
You can clone m4i_data_management from this link https://gitlab.com/m4i/m4i_data_management

Please make a copy of config.sample.py and credentials.sample.py and rename the files to config.py and credentials.py respectively.

The config.py and credentials.py files should be located in the root folder of the project, or otherwise on the PYTHON_PATH.

Please remember to set the configuration parameters you want to use.

Testing

This project uses pytest as its unit testing framework.
To run the unit tests, please install pytest and then execute the pytest command from the project root folder.

Unit tests are grouped per module.
Unit test modules are located in the same folder as their respective covered modules.
They can be recognized by the test__ module name prefix, followed by the name of the covered module.

Contacts

Name | Role | Email |

—————– | ——————- | —————————– |

Thijs Franck | Lead developer | thijs.franck@aureliusenterprise.com |

m4i_data_dictionary_io

This library contains all core functionality for reading Data Dictionary excels and pushing the defined entities in bulk
by type to atlas. Data Dictionary is expected to be in the same format as the template Data Dictionary.

Installation

Please ensure your Python environment is on version 3.9. Some dependencies do not work with any previous versions
of Python.

To install m4i-data-dictionary-io and all required dependencies to your active Python environment, please run the
following command from the project root folder:

pip install -e .

Configurations and Credentials

In the scripts directory. Please make a copy of config.sample.py and credentials.sample.py and rename the files
to config.py and credentials.py respectively. Please set the configuration parameters and credentials for atlas.

	Server name

	Description

	atlas.server.url

	The Server Url that Atlas runs on, with ‘/api/atlas’ post
fix.

	atlas.credentials.username

	The Username to be used to access the Atlas Instance.

	atlas.credentials.password

	The Password to be used to access the Atlas Instance must
correspond to the Username given.

Execution

	Create the Python Environment. How to do this can be found in this file under Installation

	Fill in the Configurations and Credentials as indicated in this file under Configurations and Credentials

	Run main.py in the terminal to load the definitions.

Testing

This project uses pytest as its unit testing framework. To run the unit tests, please install pytest and then
execute the pytest command from the project root folder.

Unit tests are grouped per module. Unit test modules are located in the same folder as their respective covered modules.
They can be recognized by the test__ module name prefix, followed by the name of the covered module.

Support / Maintenance

FAQS

	General

	Integrations

	Demo environment

	Troubleshooting deployment
	Connection is not safe

	Flink-jobmanager and taskmanager is not running

	If an entity are not getting created

Contact

	Email

	Website [https://aureliusenterprise.com/]

User comunities

	Github

	Linkedin [https://www.linkedin.com/company/aurelius-enterprise/mycompany/]

General

COMING SOON…..

[image: ../../_images/404.jpg]

Integrations

COMING SOON…..

[image: ../../_images/404.jpg]

Demo environment

COMING SOON…..

[image: ../../_images/404.jpg]

Troubleshooting deployment

Connection is not safe

After many deployment attempts, it can happen that the reflector pod is not restarted automatically.

	Check if there is a secret called letsencrypt-secret-aureliusdev in our namespace:

kubectl -n <namespace> get secrets

	If it is not there, then find the reflector pod in the default namespace:

kubectl get all

	Delete reflector pod (A new one will be created automatically):

kubectl -n <namespace> delete pod/<podname>

Flink-jobmanager and taskmanager is not running

Flink-jobmanager is not running, and Flink-taskmanager keeps restarting, but other pods are fine.

To check if all pods are running:

kubectl -n <namespace> get all

Go into the Atlas pod, and see the error message:

kubectl -n <namespace> exec -it <pod/chart-id-atlas-0> -- bash
cd opt/apache-atlas-2.2.0/logs
cat application.log

	If you see an error like:

	org.apache.solr.client.solrj.impl.HttpSolrClient$RemoteSolrException: Error from server at http://10.20.129.33:9838/solr: Can not find the specified config set: vertex_index

Then the vertex_index collection could not be created.

To solve it, we can create it manually in Solr client, then restart the Atlas pod.

	We forward port 9838, so we can access Solr web client:

kubectl -n demo port-forward <pod/chart-id-atlas-0> 9838:9838

	Open the web client on localhost:9838/solr

	Go to the Collections menu, and add a collection.

	Name: vertex_index

	Config set: _default

	maxShardsPer: -1

	From another cmd, open the atlas pod again:

kubectl -n <namespace> exec -it <pod/chart-id-atlas-0> -- bash
cd opt/apache-atlas-2.2.0/
bin/atlas_stop.py
nohup bin/atlas_start.py &

	You can exit it with CTR+C and to check if it is running:

jobs

If an entity are not getting created

It could be that a flink job has failed.

	Check whether all flink jobs are running. if not, then restart them:

kubectl -n <namespace> exec -it <pod/flink-jobmanager-pod-name> -- bash

cd py_libs/m4i-flink-tasks/scripts

/opt/flink/bin/flink run -d -py <name_of_job>.py

	Determine if the entity was created within the apache atlas.

	Determine if the entity was created in the elastic.

PS. Be aware of resource problems

About the company

COMING SOON…..

[image: ../_images/4041.jpg]

Data Quality

Data quality refers to the overall fitness for use of data. It describes the degree to which data meets the requirements of its intended use, which can vary depending on the context, application, and user.
Evaluating data quality ensures that the data is reliable, relevant, and actionable, and can help identify areas for improvement in data collection, storage, and management processes.
Ultimately, the goal of data quality management is to ensure that data can be trusted and used effectively to support decision-making, analysis, and other business processes.
Since actual data is required for this assessment, this analysis can not be done in Aurelius Atlas itself, but is performed on the related data storage system. The quality results however,
can be documented in Aurelius Atlas. This documentation contains the checked rules as well as the actual data quality compliance results.

Data quality results are then propagated along the breadcrumb of the field to datasets, collections and systems on the technical side and to data attributes, data entities and data domains on the business side.

Conceptual view

Thus, conceptually data quality results can be added in Aurelius Atlas. It consists of 3 parts:

	the actual data quality result

	an associated data quality Atlas entity

	a field which is associated with the quality result

Data quality result

Data quality result consists of multiple fields:

	a unique ID, which can be human readable

	a qualityguid, which is a guid of the actual quality result

	a data quality result (dqscore), which is a boolean value of 0 or 1, where 0 means 0% compliance and 1 means 100% compliance

Data quality rule

A data quality rule is described in Aurelius Atlas as type data quality rule. Currently you can not enter this quality rule via the front end.

A data quality rule consists of :

	name: of the associated rule

	description: explaining the thought behind the rule

	expression: which is constructuced from an expression language on the level of the data quality

	business rule ID: which is usually just a number used for ordering the rules when presented in the front end

	dimension

	Rule Category

	Rule Description

	completeness

	degree to which data is not null

	accuracy

	degree to which a column conforms to a standard

	validity

	degree to which the data comply with a predefined structure

	uniqueness

	degree to which the data has a unique value

	timeliness

	the data should be up to date

Associated field

A field can be used in multiple data quality rules, thus a field may have multiple data quality results of different data quality rule dimensions. A field is referenced by the following information:

	qualified name of the field used for the assessment

	fieldguid, that is the guid of the referenced field

	qualified field name

Technical view

Technically, data quality is represented in Aurelius Atlas as an Apache Atlas entity and as data in the metadata store (elastic app search).
The field as well as a description of the data quality rule are entities in Aurelius Atlas, while the actual data quality result is stored as metadata in elastic app search.

Data quality result

The data quality result in elastic app search is stored in the atlas-dev-quality engine. An example of the required documents is shown below. It contains all the conceptual elements explained in the previous section.

{
 "id": "nl3--nl3plant--nl3plant001--workorderid--8",
 "fields": [{
 "name": "id",
 "value": "nl3--nl3plant--nl3plant001--workorderid--8",
 "type": "enum"
 }, {
 "name": "fieldqualifiedname",
 "value": "nl3--nl3plant--nl3plant001--workorderid",
 "type": "string"
 }, {
 "name": "fieldguid",
 "value": "21f89d8f-4e10-4419-b135-6a84d55ed63f",
 "type": "string"
 }, {
 "name": "qualityguid",
 "value": "61484c0e-89db-49ff-a67a-2e3bb2e9219c",
 "type": "string"
 }, {
 "name": "dataqualityruledescription",
 "value": "This field has to be filled at all times",
 "type": "string"
 }, {
 "name": "expression",
 "value": "Completeness('workorderid')",
 "type": "string"
 }, {
 "name": "dqscore",
 "value": "1.0",
 "type": "float"
 }, {
 "name": "dataqualityruledimension",
 "value": "Completeness",
 "type": "string"
 }, {
 "name": "businessruleid",
 "value": "8.0",
 "type": "float"
 }, {
 "name": "name",
 "value": "Rule 8",
 "type": "string"
 }, {
 "name": "guid",
 "value": "61484c0e-89db-49ff-a67a-2e3bb2e9219c",
 "type": "string"
 }, {
 "name": "qualityqualifiedname",
 "value": "nl3--nl3plant--nl3plant001--workorderid--8",
 "type": "string"
 }, {
 "name": "datadomainname",
 "value": "plant data",
 "type": "string"
 }
]
}

Data quality rules

Data quality rules are Apache Atlas entities, which can not be entered via the Aurelius Atlas frontend at the moment. We are working on it.

The entity contains the required fields as properties, such that they referential integrity between data quality results and the data quality rule entity are guaranteed.
An example of a data quality rule entity in json format as it is stored in Apache Atlas is shown below.

{
 "referredEntities": {},
 "entity": {
 "typeName": "m4i_data_quality",
 "attributes": {
 "expression": "completeness('HIER_ORG')",
 "qualifiedName": "nl1--nl1hr--nl1hr001--hier_organization--30",
 "displayName": null,
 "description": null,
 "active": true,
 "businessRuleDescription": "",
 "ruleDescription": "This field has to be filled at all times",
 "name": "nl1--nl1hr--nl1hr001--hier_organization--30",
 "filterRequired": true,
 "id": 30,
 "qualityDimension": "Completeness",
 "expressionVersion": "1",
 "fields": [{
 "guid": "0df94338-1afc-455c-b9d5-c3d0e36d1dac",
 "typeName": "m4i_field",
 "uniqueAttributes": {
 "qualifiedName": "nl1--nl1hr--nl1hr001--hier_organization"
 }
 }
]
 },
 "guid": "3059989c-364d-4404-92ef-c1e719014f00",
 "isIncomplete": false,
 "relationshipAttributes": {
 "fields": [{
 "guid": "0df94338-1afc-455c-b9d5-c3d0e36d1dac",
 "typeName": "m4i_field",
 "entityStatus": "ACTIVE",
 "displayText": "HIER_ORGANIZATION",
 "relationshipType": "m4i_data_quality_field_assignment",
 "relationshipGuid": "35b3502c-38a7-4524-b266-2fd46888e5f2",
 "relationshipStatus": "ACTIVE",
 "relationshipAttributes": {
 "typeName": "m4i_data_quality_field_assignment"
 }
 }
],
 },
 }
}

The relationship attribute fields is referencing the related field. The remaining values are local to the entity and some of them are referenced and/or taken over in the data quality result data structure.

Propagation of data quality results

After creating the data quality rule entity in Apache Atlas and data quality results in the metadata store, the data quality is accessible at the field.
To propagate data quality results through the complete governance tree, currently there is a script required which can be called periodically.
In a later version of Aurelius Atlas, all changes to data quality or the governance structures in Aurelius Atlas will also propagate data quality results.
A description on how to setup the script and how to run it will follow shortly.

Definitions of data quality rules

They are located at the m4i-data-management repository quality rules [https://github.com/AthanasiosAurelius/m4i-data-management/tree/Athanasios/m4i_data_management/core/quality/rules]
You can find all the data quality rules, that you wish to apply on a dataset. They are explanations of each rule and examples on how to use them.
These are they data quality rules that are applied on a dataset.

Below is a brief description of each rule.

	Rule

	Description

	1. Bijacency

	Checks whether or not the values in the given column_a and
column_b only occur as a unique combination.

	2. Compare First characters

	Checks whether the first ‘number_of_characters’ values in
first_column_name and second_column_name are similar, and if
the values are None or NaN.

	3. Check First Characters using Prefix

	Checks whether the first ‘number_of_characters’ values starting
without in first_column_name and second_column_name are
similar, and if column_name does not start with any of the
given prefixes, and if the values are None or NaN.

	4. Check Completeness

	Checks whether the values in the column with the given
column_name are None or NaN.

	5. Check Conditional Completeness

	Checks whether or not the values in the given value_column
are None or NaN.

	6. Check Unallowed Text

	Checks if values in the column with the given value_column
contain a specific unallowed text.

	7. Check Conditional Value

	Checks whether the values in the given value_column match
(one of) the expected value(s) for a given key in the
key_column.

	8. Check Character Count

	Checks how many times the values in the column with the given
column_name contain a specific character.

	9. Check Matching Pattern

	Checks whether or not the values in the column with the given
column_name match the given pattern.

	10. Check Invalidity

	
Checks whether or not the values

in the column with the given column_name does not exist
in the given list of values.

	11. Check Length

	

Checks if the number of characters

of the values in the column with the given column_name

are equal to the required_length.

	12. Check Range

	Checks whether or not the values in the column with the given
column_name are:
- Greater than or equal to the given lower_bound.
- Less than or equal to the given upper_bound.

	13. Check Prefix

	Checks whether or not the values in the column with the given
column_name start with any of the given prefixes.

	14. Check Unallowed Text

	Checks if values in the column
with the given column_name

	15. Check Uniqueness

	Checks whether the values in the column with the given
column_name are unique (duplicate value check).

	16. Check Validity

	Checks whether or not the values in the column with the given
column_name exist in the given list of values.

Data Quality Rules and Examples

1. Bijacency

In this example, a dummy dataset is provided and the columns “id” and “name” are compared.

A dummy data set is seen in the code
First run a test to see if the columns are bijacent. The columns “id” and “name” are compared.

data = DataFrame([
 {
 "id": 1234,
 "name": "John Doe",
 "function": "Developer",
 "from": "01-01-2021"
 },
 {
 "id": 1234,
 "name": "John Doe",
 "function": "Senior developer",
 "from": "01-01-2022"
 }
])

result = bijacency(data, "id", "name")

This is the function that we are using: bijacency(df, “column_a”, “column_b”). The inputs are the dataset and the column names.
The id and name are the same in this example, which means they are bijacent. The output will be 1.

The source code to bijacency is available here [https://github.com/AthanasiosAurelius/m4i-data-management/blob/Athanasios/m4i_data_management/core/quality/rules/bijacency/bijacency.py]

2. Compare First characters

Checks whether the first ‘number_of_characters ‘values in first_column_name and second_column_name are similar, and if the values are None or NaN.

A dummy dataset is provided and the first two characters of the id and name will be compared.

data = DataFrame([
 {
 "id": "NL.xxx",
 "name": "NL.xxx",
 }
])

result = compare_first_characters(data, "id", "name", 2)

This is the function used in this example: compare_first_characters(df, “column_a”, “column_b”, num_char). The inputs are the dataset,the column names and the number of characters.

The source code to compare_first_characters is available here [https://github.com/AthanasiosAurelius/m4i-data-management/blob/Athanasios/m4i_data_management/core/quality/rules/compare_first_characters/compare_first_characters.py]

3. Check First Characters using Prefix

This rule does three checks. It checks if the first characters are the same, if the have same prefix and if the values are Nan or none.

A dummy dataset with two columns, id and name is provided

data = DataFrame([
 {
 "id": "BE.xxx",
 "name": "BE.xxx",
 }])

result = compare_first_characters_starting_without(data, "id", "name", 2, 'BE')

A prefix BE is used and the function is compare_first_characters_starting_without(data, “id”, “name”, 2, ‘BE’)
The inputs are the data, the column names, the number of characters and the prefix.
The output will be 1, because the charaters are the same and have the prefix too.

The source code to compare_first_characters_starting_without is available here [https://github.com/AthanasiosAurelius/m4i-data-management/blob/Athanasios/m4i_data_management/core/quality/rules/compare_first_characters_starting_without/compare_first_characters_starting_without.py]

4. Check Completeness

Checks whether the values in the column with the given column_name are None or NaN.

We provide a data dummy test in the unit test and we want to check if the column ‘name’ has a value or not. If it has a value the
function will return 1, otherwise it will return 0

data = DataFrame([
 {
 "id": 1234,
 "name": NaN,
 "function": "Developer",
 "from": "01-01-2021"
 }
])

result = completeness(data, "name")

The function is called completeness(df, “column”). The inputs are data and the name of the column we want to check.
The output will be 0, because the column ‘name’ has no value in it.

The source code to completeness is available here [https://github.com/AthanasiosAurelius/m4i-data-management/blob/Athanasios/m4i_data_management/core/quality/rules/completeness/completeness.py]

5. Check Conditional Completeness

The columns “value” and “conditional” are ‘None’ or ‘NaN’. The rows are filtered,
where the value of the ‘key_column’, is not a substring of the given value in the function. In this example the key column in “conditional”
and we are seeing if it has a substring of the list values.

values = ['.TMP', '.FREE']
['.TMP', '.FREE']
 data = DataFrame([
 {
 "value": "Something",
 "conditional": "xx.FREE.eur"
 }
])

 result = conditional_completeness(data, "conditional", "value", values)

This is the function of use conditional_completeness(df, “column_a”, “column_b”,[list]).
The inputs are data, the name of the columns and the list of given values.
The output here will be 1, because they are no empty values in the columns and the column “conditional” has substrings of the given
values = [‘.TMP’, ‘.FREE’]

The source code to conditional_completeness is availabe here [https://github.com/AthanasiosAurelius/m4i-data-management/tree/Athanasios/m4i_data_management/core/quality/rules/conditional_completeness]

6. Check Unallowed Text

The check here is to see if there is unalllowed text in the columns of the dummy dataframe.

values = ['.TMP', '.FREE']

unallowed_text_item = "("

data = DataFrame([
 {
 "value": "Something",
 "conditional": "xx.FREE.eur"
 }
])

result = conditional_unallowed_text(data, "conditional", "value", values, unallowed_text_item)

This is the function of use conditional_unallowed_text(df, “column_a”, “column_b”, [list_of_values], “string”).
The inputs are the dataframe, the name of the two columns, the values of the substrings and the unallowed text.
The output will be 1 because it containf substrings in the ‘conditional’ column and doesn’t contain the unallowed text in column “Value”. If it did the output would be 0.

The source code to conditional_unallowed_text is available here [https://github.com/AthanasiosAurelius/m4i-data-management/blob/Athanasios/m4i_data_management/core/quality/rules/conditional_unallowed_text/conditional_unallowed_text.py]

7. Check Conditional Value

The ‘value’ and ‘conditional’ column are being checked to see if it contains the expected values of the ‘key’ values object.

values = {"xx.TMP": "XX No Grade"} (this is dictionary with it's key and value)

data = DataFrame([(this is our dummy dataset)
 {
 "value": "XX No Grade",
 "conditional": "xx.TMP"
 }
])

result = conditional_value(data, "conditional", "value", values)

the function used for this example is called conditional_value(df, “column_a”, “column_b”, {dictionary}).
The inputs are data of the dummy dataset, the names of the columns which are “value” and “conditional” and the values, that are the substrings we want to check.
The output here will 1, because “value” column, contains an expecetd value. Otherwise it would be 0.

The source code to conditional_value is available here [https://github.com/AthanasiosAurelius/m4i-data-management/blob/Athanasios/m4i_data_management/core/quality/rules/conditional_value/conditional_value.py]

8. Check Character Count

Checks how many times the values in the column with the given column_name contain a specific character.

A dummy dataframe is provided with one column called “id”.

data = DataFrame([
 {
 "id": "12.12"
 }
])

result = contains_character(data, "id", ".", 1)

This is the function used in this example contains_character(df, “column”, “string”, int).
The inputs are data, name of the column, the character we want to check and 1 is the expected count
The check performed here is to if the the id contains “.” . The output will be 1 because the “id” column contains “.”

The source code to contains_character is available here [https://github.com/AthanasiosAurelius/m4i-data-management/blob/Athanasios/m4i_data_management/core/quality/rules/contains_character/contains_character.py]

9. Check Matching Pattern

Checks if the values in the column name match the given pattern.

A dummy dataset is provided

data = DataFrame([
 {
 "name": 'ExampleText'
 }
])

result = formatting(data, "name", r'^[a-zA-Z]+$')

This is the function used for this example formatting(df, “column”, expression_pattern).
The inputs are the dataset,the column “name” and the pattern to see if it matches
The ouput will be 1 in this example, because ‘ExampleText’ matches the pattern.

The source code to formatting is available here [https://github.com/AthanasiosAurelius/m4i-data-management/blob/Athanasios/m4i_data_management/core/quality/rules/formatting/formatting.py]

10. Check Invalidity

The values in the column with the given name value are checked if they do not exist in the given list of exampleValues.

A list of the example values and a dummy dataframe are provided.

exampleValues = ['x', 'X', 'TBD', 'Name']

data = DataFrame([
 {
 "value": "X"
 }
])

result = invalidity(data, "value", exampleValues)

The funtion is invalidity(df, “column”, [list]). The inputs are data, column name and the list of values.
The output will be 1 , becaue “X” is in the list of values.

The source code to invalidity is available here [https://github.com/AthanasiosAurelius/m4i-data-management/blob/Athanasios/m4i_data_management/core/quality/rules/invalidity/invalidity.py]

11. Check Length

The check performed here is the number of characters of the values in the column id are equal to the required_length.

A dummy dataframe with column name “id”

data = DataFrame([
 {
 "id": "1234"
 }
])

result = length(data, "id", 4)

The function is length(df,”column”,int). The inputs are data, column name and the length of required characters.
The output is 1 because the length of id is 4.

The source code to length is available here [https://gitlab.com/m4i/m4i-data-management/-/blob/Athanasios/m4i_data_management/core/quality/rules/length/length.py]

12. Check Range

The check performed here is the values in the column column_name are greater than or equal to the given lower_bound or less than or equal to the given upper_bound.

A dummy dataframe for this example with column name “value”

data = DataFrame([
 {
 "value": 0.1
 }
])

result = range(data, "value", 0, 1)

The function is range(df, “column”, int1, int2).
The inputs are the dataframe, the column name and the range (The upper and lower bound)
The output will be 1 because 0.1 is between 0 and 1.

The source code to range is available here [https://github.com/AthanasiosAurelius/m4i-data-management/blob/Athanasios/m4i_data_management/core/quality/rules/range/range.py]

13. Check Prefix

This example checks if the values in the column column_name start with any of the given prefixes.

data = DataFrame([
 {
 "id": 1234
 }
])

result = starts_with(data, "id", "1")

The function is called starts_with(data, “column”, “prefix”). The inputs are the data the column name and the prefix.
The output is 1, because “1” is in the value of the id column.

The source code to starts_with is available here [https://github.com/AthanasiosAurelius/m4i-data-management/blob/Athanasios/m4i_data_management/core/quality/rules/starts_with/starts_with.py]

14. Check Unallowed Text

This example checks if the values in the column Organisation contain a specific unallowed text.

A dummy dataset is provided.

data = DataFrame([
 {
 "Organisation": "Something Else"
 }
])

result = unallowed_text(data, "Organisation", "BG Van Oord")

The function is called unallowed_text(df, “column”, “sting”). The inputs are data, the column name and the unallowed text
The output is 1 because “BG Van Oord” is not in the “Something Else” of the “Organisation” column.

The source code to unallowed_text is available here [https://github.com/AthanasiosAurelius/m4i-data-management/tree/Athanasios/m4i_data_management/core/quality/rules/unallowed_text]

15. Check Uniqueness

This example checks if the values in the column id are unique. It checks for duplicate values

A dummy dataset is provided

data = DataFrame([
 {
 "id": "1234"
 },
 {
 "id": "1234"
 },
 {
 "id": "2345"
 }
])

result = uniqueness(data, "id")

The function is uniqueness(data, “id”). The inputs are the dataset and the name of the column.
The output will be 0, because the “id” column conatins duplicate values

The source code to uniqueness is available here [https://github.com/AthanasiosAurelius/m4i-data-management/blob/Athanasios/m4i_data_management/core/quality/rules/uniqueness/uniqueness.py]

16. Check Validity

This example checks if the values in the column value exist in the list of exampleValues.

The values in the example list and a dummy dataset are provided

exampleValues = ['Definite Contract', 'Indefinite Contract']

data = DataFrame([
 {
 "value": "Definite Contract"
 }
])

result = validity(data, "value", exampleValues)

The function is validity(df, “key”,[list]). The inputs are data, the column name and the list of example values.
The output is 1, because the value of the column exists in the example list.

The source code to validity is available here [https://github.com/AthanasiosAurelius/m4i-data-management/blob/Athanasios/m4i_data_management/core/quality/rules/validity/validity.py]

Apply Data Quality Results

The tool checks the quality of your data. To use it, you need to provide a csv file with your data and the rules you want to apply to it. The rules are basically the type
of checks you want to do on the attributes of your dataset. The rules you want to define are stored, on Aurelius Atlas and is used to apply the rules to your data.
The quality score of your data is calculated based on the applied rules and the results are sent to a Kafka topic.
Below is an image that describes the whole process for your better understanding.

[image: ../_images/logical.png]

	First upload a file, define the rules that we want to apply to the data. Then push this file to atlas.

	Then get the data quality rules from atlas and see the data quality results. The quality results have a data quality score. 1 is compiant and 0 is non-compliant

	Finally push the data quality results to kafka.

How To Perform A Data Quality Check Of Your Data

Here is a link of the repositories you will need:

https://github.com/aureliusenterprise/m4i_atlas_core

https://github.com/AthanasiosAurelius/m4i-data-management

Install M4I Data Management

This library contains all core functionality around data management.

Installation

Please ensure your Python environment is on version 3.7. Some dependencies do not work with any later versions of Python.

To install m4i-data-management and all required dependencies to your active Python environment, please run the following command from the project root folder:

To install m4i-data-management including development dependencies, please run the following command instead:

pip install -e .[dev]

Install m4i_data_management:
You can clone m4i_data_management from this link https://github.com/AthanasiosAurelius/m4i-data-management
Then you install with this command

pip install {path to m4i_data_management}

Do the same for m4i_atlas_core

pip install {path to m4i_atlas_core}

Please make a copy of config.sample.py and credentials.sample.py and rename the files to config.py and credentials.py respectively.

The config.py and credentials.py files should be located in the root folder of the project, or otherwise on the PYTHON_PATH.

Please remember to set the configuration parameters you want to use.

How to set up config and credentials file

Here is the exact configuration of the config and credentials, use this to run the example.

config = {
 "atlas_dataset_guid": "f686adca-00c4-4509-b73b-1c51ae597ebe",
 "dataset_quality_name": "example_name",
 "atlas": {
 "atlas.server.url": "https://aureliusdev.westeurope.cloudapp.azure.com/anwo/atlas/atlas",
 },
 "keycloak.server.url": "https://aureliusdev.westeurope.cloudapp.azure.com/anwo/auth/",
 "keycloak.client.id": "m4i_public",
 "keycloak.realm.name": "m4i",
 "keycloak.client.secret.key": ""
}

credentials = {
 "keycloak.credentials.username": "atlas",
 "keycloak.credentials.password": "",
 "atlas.server.url":"https://aureliusdev.westeurope.cloudapp.azure.com/anwo/atlas/atlas",
 "atlas.credentials.username":"atlas",
 "atlas.credentials.password":""
}

How to run data quality check

Our tool checks the quality of your data. To use it, you need to provide a csv file with your data and the rules you want to apply to it. The rules are basically the type of checks you want to do on the attributes of your dataset. We store your data and rules on Atlas and use our tool to apply the rules to your data. We then calculate the quality score of your data based on the applied rules and provied a csv output with the results.

These are the steps on how to do it

	In the run_quality_rules.py we can now run our check. We have to provide a dataset so we can do a quality check.
Fill in the path in the get_data_csv(). You will see it on line 63. Make a csv file with example data. Here is a simple example below.

Just One Column named UID and provide a name. Make an excel file.

UID
example_name

	Finally we run our check in the run_quality_rules.py In debug mode run the ‘asyncio.run(atlas_dataset_quality.run())’ it’s on line 59

How to create entities and relationships

In the create_push_to_atlas.py a user can create a dataset, field and data quality rule entity and push it to atlas. He can create a relationship between the field and dataset. I will explain how to do it with an example.

	Define the attributes for each instance

Define the attributes for the dataset instance

json_dataset={
 "attributes": {
 "name": "example",
 "qualifiedName": "example100"
 },
 "typeName": "m4i_dataset"
 }

Define the attributes for the field instance

json_field={
 "attributes": {
 "name": "field",
 "qualifiedName": "example--field"
 },
 "typeName": "m4i_field",
 "relationshipAttributes": {
 "dataset": {
 "guid": "<guid-of-json_dataset>",
 "typeName": "m4i_dataset",
 "relationshipType": "m4i_dataset_fields"
 }
 }
}

Define the attributes for the data quality instance

json_quality={
 "attributes": {
 "name": "field",
 "qualifiedName": "example--quality",
 "id": 1
 },
 "typeName": "m4i_data_quality"
 }

	Create instances

Create instances of BusinessDataset, BusinessField, and BusinessDataQuality

	Add relationship between the field and dataset instances

field_attributes=field_instance.attributes
field_attributes.datasets= [ObjectId(
 type_name="m4i_dataset",
 unique_attributes= M4IAttributes(
 qualified_name="example100"
)
)]

	Push the entities to atlas.

We use the create_entities function that can be found in the m4i_atlas_core. It is important to undertstand what are the inputs.
create_entites(dataset_instance,referred_entites,accesss_token). The first input is the instance we created, then the referred entities, which here are non because we are just creating an entity with no relationships and finally the access token.

Push the dataset instance to Atlas

async def create_in_atlas(dataset,access_token=access_token):
 mutations_dataset = await create_entities(dataset,referred_entities=None,access_token=access_token)
 print(mutations_dataset)
push_to_atlas= asyncio.run(create_in_atlas(dataset_instance,access_token=access_token))

Push the field instance to Atlas

async def create_in_atlas_field(field,access_token=access_token):
 mutations_field = await create_entities(field,field,referred_entities=None,access_token=access_token)
 print(mutations_field)
push_field = asyncio.run(create_in_atlas_field(field_instance,access_token=access_token))

Push the data quality instance to Atlas

async def create_in_atlas_rule(rule,access_token=access_token):
 mutations_rule = await create_entities(rule,referred_entities=None,access_token=access_token)
 print(mutations_rule)
push_rule = asyncio.run(create_in_atlas_rule(rule,access_token=access_token))

Index

 Bijacency [https://gitlab.com/m4i/m4i-data-management/-/blob/Athanasios/m4i_data_management/core/quality/rules/bijacency/bijacency.py]

 _static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/logo1.png
AURELIUS
a. Atlas

_static/fav.png
o

_static/minus.png

_static/plus.png

_static/up.png

_static/favicon/fav.png
o

nav.xhtml

 Table of Contents

 		
 Aurelius Atlas Data Governance Solution

_static/up-pressed.png

_static/logo/logo-white.png
a' AURELIUS ATLAS

_static/logo/logo.png
[™ AURELIUS ATLAS
ol o o

_static/logo/logo-big.png
a' AURELIUS ATLAS

_static/logo/logo-green.png
AURELIUS ATLAS
i oron covennance

_images/404.jpg
@

Website is under
construction

Lorem ipsum dolor sit amet, consectetur adipiscing elit.

_images/4041.jpg
@

Website is under
construction

Lorem ipsum dolor sit amet, consectetur adipiscing elit.

_static/logo/logo1.png
AURELIUS
a. Atlas

_images/access_keys_tab.png
Security + networking
& Networking
@ Front Door and CDN

¢ Access keys

_images/access_keys_values.png
(@© Setrotation reminder () Refresh &7 Give feedback

Access keys authenticate your applications' requests to this storage account. Keep your keys in a secure location like Azure.
Key Vault, and replace them often with new keys. The two keys allow you to replace one while stil using the other.

Remember to update the keys with any Azure resources and apps that use this storage account.
Learn more about managing storage account access keys &

Storage account name azure.client.default.account
[aurefiusdev D)

key1 () Rotate key
Last rotated: 3/13/2024 (0 days ago)
Key azure.client.default.key

Connection string

_images/backup-overview.png
Apache Atlas
to be backed

up.
0] Atlas
Existing Atlas
W Instance © e
gilat which needs Fresh Atlas

// to be backed Instance
up
Make a REST call

Or an Existing
Instance

e

curl g XPOST u yserpass H “Content.

Type: muttpanform-data” H "Cache-
Contro:no-cache® -

response

data=@tul_backupaip
"1t/ localhost21000/apifatas/admin/i
mport”

All Data is in a zip folder

_images/containers_create2.png
New container X

Name *

[aurelius-atlas-elastic-backup

Anonymous access level ©

[Private (no anonymous access)

@ The access level i set to private because anonymous access is
disabled on this storage account.

v Advanced

_images/containers_tab.png
Data storage
= Containers
& File shares
T Queues
=

Tables

_images/cert_aurelius_dev.png
NAME READY SECRET AGE
cert-aureliusdev True letsencrypt-secret-aureliusdev 8h

_images/containers_create1.png
Home > aureliusdev

== aureliusdev | Containers » #

Storage account

o

_images/frontend.png
AURELIUS

Atlas

Atlas

Getting started

Welcome to the Aurelius Atlas solution powered by Apache Atlas! Aurelius Atlas is an open-source Data Governance solution, based on a selection of open-source tools to facilitate

business users to access governance information in an easily consumable way and meet the data governance demands of the distributed data world.

Acce

us Atlas

Technology overview

To enable business users to benefit form governance data, a special user experience is
required. The Aurelius Atlas. Ths solution is using several open source solutions, in
particular, Apache Atlas, Keycloak, Apache Flink and ElasticSearch. The dependencies of
these technologies are depicted here. Several of these solutions have their own
management interface, which are exposed in this helm chart, but can easily be disabled. All
user interfaces are protected by username and passwords which can be derived from the
Kubernetes environment by your administrator.

Namespace

H :

Python based
REST services

_images/k8s.png
ingress

o s
= = - Reverse proxy

@y Keycloak

Namespace
Python based

REST services

Data2Model

Elasticsearch

Apache Atlas Lineage model

Elastic enterprise
search 8 Apache Kafka
IaC Lineage

[————1

il

aureliusdev.westeurope.cloudapp.azure.com/namespace/atlas

_images/deployment_result.png
Client: Local Machine

Web browser:

hitp://sur:8087 /atlas2/

http://127.0.0.1:8087/atlas2/

hosts

127.0.0.1 localhost svr

Host: Virtual Machine

Docker container: reverse-proxy

_images/docker_compose_ps.png
NAME
atlas

broker
elasticsearch
enterprisesearch
jobmanager
kafka-ui
keycloak

kibana
reverse-proxy
taskmanager

P ———

IMAGE
wombach/docker -apache-atla:
confluentinc/cp-kafka:7.3.0

docker.elastic.co/elasticsearch/elasticsearch
docker.elastic.co/enterprise-search/enterprise-searchis.2.2

wombach/docker-£1in)
provectuslabs/kafka-ui

151

wombach/docker-keycloak: 16.1.0.1
docker.elastic.co/kibana/kibana:

0

2.0.4

2.2

wombach/dockez-reverse-proxy:1.0.9.4

wombach/docker-£link:1.15.1
confluentinc/cp-zookeeper:

0
.0.1

2.2

COMMAND
"/bin/bash -c /opt/a."
"/etc/contluent/dock "
"/bin/tini -- [usz/L."
"tini - /usr/local/.”
"/docker-entrypoint
"/bin/sh -c 'java —-."
/opt/3boss/tools/do.
"/bin/tini -- [usz/L."
"/bin/sh -c */usz/lo."
"/dockez-entrypoint
" /etc/confluent/dock "

SERVICE
atlas

broker

eso1
enterprisesearch
Fre—
kafka-ui
keycloak

kibana
reverse-proxy
taskmanager

P ——

:

conaanoaana

days
days
days
days
days
days
days
days
days
days
days

ago
ago
ago
ago
ago
ago
ago
ago
ago
ago
ago

STATUS
Up & days
Up & days
Up & days
Up & days
Up & days
Up & days
Up & days
Up & days
Up & days
Up & days
Up € days

(nealthy)

(nealthy)
(nealthy)

(nealthy)

PORTS
0.0.0.0:9027->3027/cp,
0.0.0.0:9092->3092/tcp,
0.0.0.0:9200->5200/cp,
0.0.0.0:3002->3002/tcp,

0.0.0.0:8082->8080/tcp,
0.0.0.0:8080->8080/tcp,
0.0.0.0:5601->5601/ctcp,
80/tcp, 0.0.0.0:8087->8081/tcp,
€123/tcp, 8081/tcp

2181/tcp, 2888/tcp, 3888/tcp

9027->9027/tcp, 0.0.0.0:21000->21000/tcp,
9082->9092/tcp.

9200->9200/tcp, 9300/tcp

3002->3002/tcp.

€123/tcp, 0.0.0.0:8083->8081/tcp,
5082->8080/tcp.
8080->8080/tcp, 8443/tcp
5601->5601/tcp.

083->8081/ccp

5087->8081/tcp.

21000->21000/tcp

_images/logical.png
Example oata
Metadas (datase]

an

Getallqualty
fors

_images/namespaces.png
N Prod
Namespace Dev amespace

https://aureliusenterprise.weste https://aureliusenterprise.weste
urope.cloudapp.azure.com/dev Namespace UAT urope.cloudapp.azure.com/pro

d

https://aureliusenterprise.weste
urope.cloudapp.azure.com/uat

_images/letsencrypt.png
NAME READY AGE
letsencrypt-clusterissuer-aureliusdev True 24h

_images/storage_account_options2.png
Create a storage account

Basis Advanced Networking Dataprotection Encryption Tags Review

Access protocols

Blob and Data Lake Gen2 endpaints are provisioned by default Leam more

@ To enable SFTP, ‘hierarchical namespace’ must be enabled,

@ To enable NFS v3 ‘hierarchical namespace’ must be enabled. Lear more about NFS
v

Blob storage

Allow cross-tenant replication @ (]

Access tier © (O Hot: Optimized for frequently accessed data and everyday usage scenarios

(® Cool: Optimized for infrequently accessed data and backup scenarios

Azure Files

Enable large file shares © O

_images/storage_account_service.png
< G

() https://portal.azure.com/?quickstart=true#home

O storage accounts] X
a
Azure services [0 Services (23) Marketplace (3)
Services

== Storage accounts
S (

_images/storage_account_create.png
Microsoft Azure 0O Search reso

Home >

Storage accounts =

Aurelius Enterprise

—+ Create 9 Restore SE'E Manage view

_images/storage_account_options1.png
Create a storage account

Basics Advanced Networking

Project details

Dataprotection ~ Encryption ~ Tags ~ Review

Select the subscription in which to create the new storage account. Choose a new o existing resource group to organize and
manage your storage account together with other resources.

Subscription *

Resource group *

Instance details

Storage account name © *

Region @ *

Performance @ *

Redundancy © *

[production ~

[aks v
Create new

[aureliusdev

[Europe) West Europe ~

Deploy to an edge zone

(®) Standard: Recommended for most scenarios (general-purpose v2 account)

(O Premium: Recommended for scenarios that require low latency.

[Locally-redundant storage (LRS) ~

_static/comment-bright.png

_static/ajax-loader.gif

