
Aurelius Atlas Data Governance
Solution
Release 0.1

Mar 20, 2024

Menu

1 What is Aurelius Atlas? 3
1.1 Components of Aurelius Atlas Helm: . 3
1.2 What do I need to run the application? . 5
1.3 Integration Options . 5

2 Deployment options 7
2.1 Azure Deploy Aurelius Atlas . 7
2.2 Google Deploy Aurelius Atlas . 12
2.3 How to deploy Aurelius Atlas with Docker Compose . 17

3 Technical description 23

4 Aurelius Atlas Backup 25
4.1 Apache Atlas backup . 26
4.2 Elasticsearch backup . 27

5 Demo environment 33

6 Integrations 35

7 Libraries 37
7.1 Aurelius Atlas . 37
7.2 Models4Insight . 65

8 Support / Maintenance 67
8.1 FAQS . 67
8.2 Contact . 70
8.3 User comunities . 71

9 About the company 73

10 Data Quality 75
10.1 Conceptual view . 75
10.2 Technical view . 76
10.3 Data Quality Rules and Examples . 81
10.4 Apply Data Quality Results . 87

i

ii

Aurelius Atlas Data Governance Solution, Release 0.1

Thank you for your interest in Aurelius Atlas Data Governance solution, powered by Apache Atlas.

Here you will find a step-by-step approach how to deploy, operate and use Aurelius Atlas, including a demo environ-
ment, videos and possible user stories.

Aurelius Atlas is an open-source solution, which can be used free under the Elastic V2 license agreement.

Menu 1

Aurelius Atlas Data Governance Solution, Release 0.1

2 Menu

CHAPTER 1

What is Aurelius Atlas?

Welcome to the Aurelius Atlas solution powered by Apache Atlas, Aurelius Atlas is an open-source Data Gover-
nance solution, based on a selection of open-source tools to facilitate business users to access governance information
in an easy consumable way and meet the data governance demands of the distributed data world.

It is a Data Governance solution powered by Apache Atlas for Data in motion (in transit), Data in rest, Data in use. It
manages distributed data governance over multicloud environment as well as hybrid (On-Prem)

1.1 Components of Aurelius Atlas Helm:

• Apache Atlas

• Kafka UI

• Apache Flink

• Elasticsearch

• Keycloak

• API services

The deployment of our solution is provided as a helm chart so you can roll it out in your Kubernetes cluster.

The solution itself consists of Apache Atlas in the core with Apache Kafka used in HBase, you also publish and make
accessible the original Apache user interface.

3

https://atlas.apache.org/#/
https://kafka.apache.org/
https://flink.apache.org/
https://www.elastic.co/guide/index.html
https://www.keycloak.org/documentation

Aurelius Atlas Data Governance Solution, Release 0.1

In addition to that we deployed a Keycloack which is our identity provider it’s open source also, which allows to
integrate with all kinds of other identity providers like in our demo environment which you can try by Clicking here.

We connect with Gmail, but you can also connect to an active directory somewhere, on top of that we have our actual
user interface, which is included in what we call the Reverse proxy port.

This port have a lot of uses for searches and full text search but also with different facets, for that we are using the
Elastic stack, so an elastic search is and elastic enterprise search and a Kibana just to manage the environment, we
also publish the Kibana interface in this helm chart, since the synchronization all changes are directly performed in
Apache Atlas but then have to be updated in the elastic environment.

We use Apache Flink and some jobs in there streaming jobs in there to consume the Kafka events from Apache Atlas
and translate that into changes in the Elastic Enterprise Search environment using these streams as additional service.

We have rest based services for the data to model and the lineage model both are related required for the lineage graph
generation and we have the REST API for integrating our solution with infrastructure as code in an easy way also
provided in the image.

Different namespaces on the same cluster for different, independent deployments.

4 Chapter 1. What is Aurelius Atlas?

Aurelius Atlas Data Governance Solution, Release 0.1

It is possible to deploy the helm chart multiple times in different namespaces, so in our usual environments we have
governance set up for the dev environment for the user acceptance environment, and for the production environment,
they can all run in the same Kubernetes cluster underneath the same increased controller, and you will always have the
same URLs except that the namespace becomes part of the URL and everything will be related there.

So, to understand how these different components work together, click here to go to the technical documentation

If you want to learn more about all the components that made up Aurelius Atlas, Click here

1.2 What do I need to run the application?

To be able to deploy Aurelius Atlas a Kubernetes cluster will be needed.

These are some of the components that you need to run the application, be sure that you have them, before running the
application.

If you do not have it click on the name to go to the external documentation to set up.

• Apache Atlas

• Kafka UI

• Apache Flink

• Elasticsearch

• Keycloak

• API services

If you already have it, you can go directly to the deploy section by Clicking here.

1.3 Integration Options

Aurelius Atlas has different options to integrate here is an overview of the integration options:

• Identity providers via Keycloak (AAD, gmail,. . .)

1.2. What do I need to run the application? 5

https://atlas.apache.org/#/
https://kafka.apache.org/
https://flink.apache.org/
https://www.elastic.co/guide/index.html
https://www.keycloak.org/documentation

Aurelius Atlas Data Governance Solution, Release 0.1

• External* Apache Atlas

• External* Elastic

• External* Kafka

• Hadoop

• Azure

• AWS

Click here to know more about the integration options.

6 Chapter 1. What is Aurelius Atlas?

https://atlas.apache.org/#/
https://www.elastic.co/guide/index.html
https://kafka.apache.org/20/documentation/
https://hadoop.apache.org/docs/stable/
https://docs.microsoft.com/en-us/azure/?product=popular
https://docs.aws.amazon.com/

CHAPTER 2

Deployment options

2.1 Azure Deploy Aurelius Atlas

2.1.1 Getting started

Welcome to the Aurelius Atlas solution powered by Apache Atlas! Aurelius Atlas is an open-source Data Governance
solution, based on a selection of open-source tools to facilitate business users to access governance information in an
easy consumable way and meet the data governance demands of the distributed data world.

Here you will find the instillation instructions and the required setup of the kubernetes instructions, followed by how
to deploy the chart in different namespaces.

2.1.2 Installation Requirements

This installation assumes that you have:

• a kubernetes cluster running with 2 Node of CPU 4 and 16GB

• Chosen Azure Cli installed

– az

• kubectl installed and linked to Azure Cli

– az linked

Further you need the helm chart to deploy all services from https://github.com/aureliusenterprise/
Aurelius-Atlas-helm-chart

2.1.3 Required Packages

The deployment requires the following packages:

• Certificate Manager

7

https://learn.microsoft.com/en-us/cli/azure/install-azure-cli
https://learn.microsoft.com/en-us/azure/aks/learn/quick-kubernetes-deploy-cli#connect-to-the-cluster
https://github.com/aureliusenterprise/Aurelius-Atlas-helm-chart
https://github.com/aureliusenterprise/Aurelius-Atlas-helm-chart

Aurelius Atlas Data Governance Solution, Release 0.1

– To handel and manage the creation of certificates

– Used in demo: cert-manager

• Ingress Controller

– Used to create an entry point to the cluster through an external IP.

– Used in demo: Nginx Controller

• Elastic

– Used to deploy elastic on the kubernetes cluster

– In order to deploy elastic, Elastic Cluster on Kubernetes (ECK) must be installed on
the cluster. To install ECK on the cluster, please follow the instructions provided on https://www.
elastic.co/guide/en/cloud-on-k8s/master/k8s-deploy-eck.html

• Reflector

– Used to reflect secrets across namespaces

– Used in demo to share the DNS certificate to different namespace

The steps on how to install the required packages

1. Install Certificate manager

Only install if you do not have a certificate manager. Please be aware if you use another manger, some commands later
will need adjustments. The certificate manager here is cert-manager.

helm repo add jetstack https://charts.jetstack.io
helm repo update
helm install cert-manager jetstack/cert-manager --namespace cert-manager --
→˓create-namespace --version v1.9.1 --set installCRDs=true

2. Install Ingress Nginx Controller

Only install if you do not have an Ingress Controller.

helm repo add ingress-nginx https://kubernetes.github.io/ingress-nginx
helm repo update
helm install nginx-ingress ingress-nginx/ingress-nginx --set controller.
→˓publishService.enabled=true --set controller.service.annotations."service\.beta\.
→˓kubernetes\.io/azure-load-balancer-health-probe-request-path"=/healthz

It is also possible to set a DNS label to the ingress controller if you do not have a DNS by
adding --set controller.service.annotations."service\.beta\.kubernetes\.io/
azure-dns-label-name"=<label>

3. Install Elastic

kubectl create -f https://download.elastic.co/downloads/eck/2.3.0/crds.yaml
kubectl apply -f https://download.elastic.co/downloads/eck/2.3.0/operator.yaml

8 Chapter 2. Deployment options

https://www.elastic.co/guide/en/cloud-on-k8s/master/k8s-deploy-eck.html
https://www.elastic.co/guide/en/cloud-on-k8s/master/k8s-deploy-eck.html
https://cert-manager.io/docs/installation/helm/

Aurelius Atlas Data Governance Solution, Release 0.1

4. Install Reflector

helm repo add emberstack https://emberstack.github.io/helm-charts
helm repo update
helm upgrade --install reflector emberstack/reflector

2.1.4 Azure DNS Label

In Azure, it is possible to apply a DNS label to the ingress controller, if you do not have a DNS.

Edit the ingress controller deployment (if not set upon installation)

helm upgrade nginx-ingress ingress-nginx/ingress-nginx --reuse-values --set
→˓controller.service.annotations."service\.beta\.kubernetes\.io/azure-dns-label-name"=
→˓<label>

Save and exit. Resulting DSN will be <label>.westeurope.cloudapp.azure.com

2.1.5 Put ssl certificate in a Secret

Before you start, update zookeeper dependencies:

cd charts/zookeeper/
helm dependency update

2.1.6 Define a cluster issuer

This is needed if you installed cert-manager from the required packages.

Here we define a CLusterIssuer using cert-manager on the cert-manager namespace

1. Move to the home directory of the chart helm-governance

2. Uncomment templates/prod_issuer.yaml.

3. Update the {{ .Values.ingress.email_address }} in values.yaml file and create the ClusterIssuer
with the following command

helm template -s templates/prod_issuer.yaml . | kubectl apply -f -

4. comment out prod_issuer.yaml in templates Check that it is running:

kubectl get clusterissuer -n cert-manager

5. It is running when Ready is True.

2.1. Azure Deploy Aurelius Atlas 9

Aurelius Atlas Data Governance Solution, Release 0.1

2.1.7 Create ssl certificate

This is needed if you installed cert-manager from the required packages.

1. Assumes you have a DNS linked to the external IP of the ingress controller

2. Move to the home directory of the chart helm-governance

3. Uncomment templates/certificate.yaml

4. Update the values.yaml file {{ .Values.ingress.dns_url}} to your DNS name

5. Create the certificate with the following command

helm template -s templates/certificate.yaml . | kubectl apply -f -

6. Comment out certificate.yaml in templates.

7. Check that it is approved.

kubectl get certificate -n cert-manager

It is running when Ready is True

2.1.8 Deploy Aurelius Atlas

1. Create the namespace

kubectl create namespace <namespace>

1. Update the values.yaml file

• {{ .Values.keycloak.keycloakFrontendURL }} replace it to your DNS name

• {{ .Values.kafka-ui.bootstrapServers }} edit it with your <namespace>

• {{ .Values.kafka-ui.SERVER_SERVLET_CONTEXT_PATH }} edit it with your
<namespace>

2. Deploy the services

cd Aurelius-Atlas-helm-chart
helm dependency update
helm install --generate-name -n <namespace> -f values.yaml .

Users with Randomized Passwords

In the helm chart 5 base users are created with randomized passwords stored as secrets on kubernetes.

The 5 base users are:

1. Keycloak Admin User

2. Atlas Admin User

3. Atlas Data Steward User

10 Chapter 2. Deployment options

Aurelius Atlas Data Governance Solution, Release 0.1

4. Atlas Data User

5. Elastic User

To get the randomized passwords out of kubernetes there is a bash script get_passwords.

./get_passwords.sh <namespace>

The above command scans the given <namespace> and prints the usernames and randomized passwords as follows:

keycloak admin user pwd:
username: admin
vntoLefBekn3L767

keycloak Atlas admin user pwd:
username: atlas
QUVTj1QDKQWZpy27

keycloak Atlas data steward user pwd:
username: steward
XFlsi25Nz9h1VwQj

keycloak Atlas data user pwd:
username: scientist
PPv57ZvKHwxCUZOG
==========
elasticsearch elastic user pwd:
username: elastic
446PL2F2UF55a19haZtihRm5

2.1.9 Check that all pods are running

kubectl -n <namespace> get all # check that all pods are running

Aurelius Atlas is now accessible via reverse proxy at <DNS-url>/<namespace>/atlas/

2.1.10 Initialize the Atlas flink tasks and optionally load sample data

Flink: - For more details about this flink helm chart look at flink readme <./charts/flink/README.md>

Init Jobs:

• Create the Atlas Users in Keycloak

• Create the App Search Engines in Elastic

kubectl -n <namespace> exec -it <pod/flink-jobmanager-pod-name> -- bash

cd init
pip3 install m4i-atlas-core@git+https://github.com/aureliusenterprise/m4i_atlas_core.
→˓git#egg=m4i-atlas-core --upgrade
cd ../py_libs/m4i-flink-tasks/scripts
/opt/flink/bin/flink run -d -py get_entity_job.py
/opt/flink/bin/flink run -d -py publish_state_job.py
/opt/flink/bin/flink run -d -py determine_change_job.py
/opt/flink/bin/flink run -d -py synchronize_appsearch_job.py

2.1. Azure Deploy Aurelius Atlas 11

Aurelius Atlas Data Governance Solution, Release 0.1

/opt/flink/bin/flink run -d -py local_operation_job.py
To Load the Sample Demo Data
cd
cd init
./load_sample_data.sh

2.2 Google Deploy Aurelius Atlas

2.2.1 Getting started

Welcome to the Aurelius Atlas solution powered by Apache Atlas! Aurelius Atlas is an open-source Data Governance
solution, based on a selection of open-source tools to facilitate business users to access governance information in an
easy consumable way and meet the data governance demands of the distributed data world.

Here you will find the instillation instructions and the required setup of the kubernetes instructions, followed by how
to deploy the chart in different namespaces.

2.2.2 Installation Requirements

This installation assumes that you have:

• A kubernetes cluster running with 2 Node of CPU 4 and 16GB

• Gcloud Cli installed

– gcloud

• kubectl installed and linked to Gcloud Cli

– gcloud linked

• Helm installed locally

• A DomainName

Further you need the helm chart to deploy all services from https://github.com/aureliusenterprise/
Aurelius-Atlas-helm-chart

2.2.3 Required Packages

The deployment requires the following packages:

• Certificate Manager

– To handel and manage the creation of certificates

– Used in demo: cert-manager

• Ingress Controller

– Used to create an entry point to the cluster through an external IP.

– Used in demo: Nginx Controller

• Elastic

– Used to deploy elastic on the kubernetes cluster

12 Chapter 2. Deployment options

https://cloud.google.com/sdk/docs/install#deb
https://cloud.google.com/kubernetes-engine/docs/how-to/cluster-access-for-kubectl#gcloud
https://github.com/aureliusenterprise/Aurelius-Atlas-helm-chart
https://github.com/aureliusenterprise/Aurelius-Atlas-helm-chart

Aurelius Atlas Data Governance Solution, Release 0.1

– In order to deploy elastic, Elastic Cluster on Kubernetes (ECK) must be installed on
the cluster. To install ECK on the cluster, please follow the instructions provided on https://www.
elastic.co/guide/en/cloud-on-k8s/master/k8s-deploy-eck.html

• Reflector

– Used to reflect secrets across namespaces

– Used in demo to share the DNS certificate to different namespace

• Zookeeper

The steps on how to install the required packages

1. Install Certificate manager

Only install if you do not have a certificate manager. Please be aware if you use another manger, some commands later
will need adjustments. The certificate manager here is cert-manager.

helm repo add jetstack https://charts.jetstack.io
helm repo update
helm install cert-manager jetstack/cert-manager --namespace cert-manager --
→˓create-namespace --version v1.9.1 --set installCRDs=true --set global.
→˓leaderElection.namespace=cert-manager

• It is successful when the output is like this:

NOTES:
cert-manager v1.91 has been deployed successfully

2. Install Ingress Nginx Controller

Only install if you do not have an Ingress Controller.

helm repo add ingress-nginx https://kubernetes.github.io/ingress-nginx
helm repo update
helm install nginx-ingress ingress-nginx/ingress-nginx --set controller.
→˓publishService.enabled=true

3. Install Elastic

kubectl create -f https://download.elastic.co/downloads/eck/2.3.0/crds.yaml
kubectl apply -f https://download.elastic.co/downloads/eck/2.3.0/operator.yaml

4. Install Reflector

helm repo add emberstack https://emberstack.github.io/helm-charts
helm repo update
helm upgrade --install reflector emberstack/reflector

2.2. Google Deploy Aurelius Atlas 13

https://www.elastic.co/guide/en/cloud-on-k8s/master/k8s-deploy-eck.html
https://www.elastic.co/guide/en/cloud-on-k8s/master/k8s-deploy-eck.html
https://cert-manager.io/docs/installation/helm/

Aurelius Atlas Data Governance Solution, Release 0.1

5. Update Zookeeper Dependencies

Move to the directory of Aurelius-Atlas-helm-chart

cd charts/zookeeper/
helm dependency update

2.2.4 Get Ingress Controller External IP to link to DNS

Only do this if your ingress controller does not already have a DNS applied.

2.2.5 Get External IP to link to DNS

kubectl get service/nginx-ingress-ingress-nginx-controller

Take the external-IP of the ingress controller Link your DNS to this external IP.

2.2.6 Put ssl certificate in a Secret

2.2.7 Define a cluster issuer

This is needed if you installed letsencrypt from the required packages.

Here we define a CLusterIssuer using letsencrypt on the cert-manager namespace:

• Move to the directory of Aurelius-Atlas-helm-chart

• Uncomment prod_issuer.yaml in templates

• Update {{ .Values.ingress.email_address }} in values.yaml file

• Create the clusterIssuer with the following command

helm template -s templates/prod_issuer.yaml . | kubectl apply -f -

• Comment out prod_issuer.yaml in templates

Check that it is running:

kubectl get clusterissuer -n cert-manager

It is running when Ready is True.

2.2.8 Create ssl certificate

This is needed if you installed letsencrypt from the required packages.

• Assumes you have a DNS linked to the external IP of the ingress controller

14 Chapter 2. Deployment options

Aurelius Atlas Data Governance Solution, Release 0.1

• Move to the directory of Aurelius-Atlas-helm-chart

• Uncomment certificate.yaml in templates

• Update the Values file {{ .Values.ingress.dns_url}} to your DNS name

• Create the certificate with the following command

helm template -s templates/certificate.yaml . | kubectl apply -f -

• Comment out certificate.yaml in templates

Check that it is approved:

kubectl get certificate -n cert-manager

It is running when Ready is True.

2.2.9 Deploy Aurelius Atlas

1. Update the values.yaml file

• {{ .Values.keycloak.keycloakFrontendURL }} replace it to your DNS name

• {{ .Values.kafka-ui.bootstrapServers }} edit it with your <namespace>

• {{ .Values.kafka-ui.SERVER_SERVLET_CONTEXT_PATH }} edit it with your
<namespace>

• Create the namespace

kubectl create namespace <namespace>

• Deploy the services

cd Aurelius-Atlas-helm-chart
helm dependency update
helm install --generate-name -n <namespace> -f values.yaml .

Please note that it can take 5-10 minutes to deploy all services.

Users with Randomized Passwords

In the helm chart 5 base users are created with randomized passwords stored as secrets on kubernetes.

The 5 base users are:

1. Keycloak Admin User

2. Atlas Admin User

3. Atlas Data Steward User

4. Atlas Data User

5. Elastic User

2.2. Google Deploy Aurelius Atlas 15

Aurelius Atlas Data Governance Solution, Release 0.1

To get the randomized passwords out of kubernetes there is a bash script get_passwords.

./get_passwords.sh <namespace>

The above command scans the given <namespace> and prints the usernames and randomized passwords as follows:

keycloak admin user pwd:
username: admin
vntoLefBekn3L767

keycloak Atlas admin user pwd:
username: atlas
QUVTj1QDKQWZpy27

keycloak Atlas data steward user pwd:
username: steward
XFlsi25Nz9h1VwQj

keycloak Atlas data user pwd:
username: scientist
PPv57ZvKHwxCUZOG
==========
elasticsearch elastic user pwd:
username: elastic
446PL2F2UF55a19haZtihRm5

kubectl -n <namespace> get all # check that all pods are running

Atlas is now accessible via reverse proxy at <DNS-url>/<namespace>/atlas/

2.2.10 Initialize the Atlas flink tasks and optionally load sample data

Flink:

• For more details about this flink helm chart look at flinkreadme

Init Jobs:

• Create the Atlas Users in Keycloak

• Create the App Search Engines in Elastic

kubectl -n <namespace> exec -it <pod/flink-jobmanager-pod-name> -- bash

cd init

pip3 install m4i-atlas-core@git+https://github.com/aureliusenterprise/m4i_atlas_core.
→˓git#egg=m4i-atlas-core --upgrade

cd ../py_libs/m4i-flink-tasks/scripts

/opt/flink/bin/flink run -d -py get_entity_job.py
/opt/flink/bin/flink run -d -py publish_state_job.py
/opt/flink/bin/flink run -d -py determine_change_job.py
/opt/flink/bin/flink run -d -py synchronize_appsearch_job.py
/opt/flink/bin/flink run -d -py local_operation_job.py

16 Chapter 2. Deployment options

./charts/flink/README.md

Aurelius Atlas Data Governance Solution, Release 0.1

cd init
./load_sample_data.sh

2.3 How to deploy Aurelius Atlas with Docker Compose

2.3.1 Getting started

Welcome to Aurelius Atlas, a powerful data governance solution powered by Apache Atlas! Aurelius Atlas leverages
a carefully curated suite of open-source tools to provide business users with seamless access to governance informa-
tion. Our solution is designed to address the evolving demands of data governance in a distributed data environment,
ensuring that you can easily consume and utilize valuable governance insights.

This guide provides comprehensive instructions for setting up the Docker Compose deployment and covers various
deployment scenarios. You will find step-by-step instructions to configure the required setup and deploy the system.

2.3.2 Description of system

The solution is based on Apache Atlas for metadata management and governance, and Apache Kafka is utilized for
communicating changes in the system between different components. A Kafka Web based user interface is made
accessible to have easy access to the Apache Kafka system for maintenance and trouble shooting. Additionally, an
Apache server is implemented to handle and distribute frontend traffic to the corresponding components. A custom
interface has been developed to enable effective search and browsing functionality using full-text search capabilities,
leveraging the power of the Elastic stack. This stack includes Elasticsearch, Enterprise Search, and Kibana. Keycloak
serves as the identity provider implementing Single Sign On functionality for all Web based user interfaces. Apache
Flink is used to facility the creation of metadata to support the search functionality. Thus, Apache Flink runs streaming
jobs that consume Kafka events from Apache Atlas and create metadata in Elastic Enterprise Search.

2.3.3 Hardware requirements

• 4 CPU cores

• 32GB RAM

• 100GB DISK

2.3.4 Installation Requirements

To deploy this solution you will need to install the following components:

• docker

• docker compose

Please ensure that you have these components installed on both the host and client machines for a successful deploy-
ment

In addition you need the docker compose file from https://github.com/aureliusenterprise/
Aurelius-Atlas-docker-compose.

2.3. How to deploy Aurelius Atlas with Docker Compose 17

https://github.com/aureliusenterprise/Aurelius-Atlas-docker-compose
https://github.com/aureliusenterprise/Aurelius-Atlas-docker-compose

Aurelius Atlas Data Governance Solution, Release 0.1

2.3.5 How to connect to the docker-compose environment?

For the client a local machine is required and for the host a VM or local machine can be used. Below we describe
some possible scenarios for this deployment

2.3.6 Deployment on local machine

No additional action is required

2.3.7 Deployment on VM with public domain name

Connect to the VM using as destination its public IP

2.3.8 Deployment on VM without public domain name

In this scenario the following additional components are required:

Host:

• ssh server

Client:

• ssh client

To achieve connectivity with the Host and the Client the following steps have to be taken:

• From the client Connect to the Host using as destination the hosts IP address

• Define a ssh tunnel from the client to the host for port 8087

8087 -> 127.0.0.1:8087

• Extend hosts file on the client with the following line (admin right required)

127.0.0.1 localhost localhost4 $EXTERNAL_HOST

This is a representation of the described deployment on VM:

18 Chapter 2. Deployment options

Aurelius Atlas Data Governance Solution, Release 0.1

2.3.9 Preparatory Steps

On the host:

1. Start docker (admin rights required):

sudo service docker start

2. Obtain the IP address or hostname of the host machine’s eth0 interface:

• If deployment is on local machine:

export EXTERNAL_HOST=$(ifconfig eth0 | grep 'inet' | cut \-d: \-f2 | sed \-e 's/.
→˓*inet \\([^]*\\).*/\\1/')

• If deployment is on a VM:

export EXTERNAL_HOST={hostname of VM}

3. Run the following script:

./retrieve_ip.sh

This script updates the values of $EXTERNAL_HOST within the templates used to generate the necessary configuration
files for the various services.

4. Grant Elasticsearch sufficient virtual memory to facilitate its startup (admin rights required):

sudo sysctl -w vm.max_map_count=262144

For more details on configuring virtual memory for Elasticsearch, refer to the elastic documentation page

2.3.10 Default Users

By default these roles are created in the different services:

2.3. How to deploy Aurelius Atlas with Docker Compose 19

https://www.elastic.co/guide/en/elasticsearch/reference/8.2/vm-max-map-count.html

Aurelius Atlas Data Governance Solution, Release 0.1

• Elastic Admin User: Username: elastic

Password: elasticpw

• Keycloak Admin user: Username: admin

Password: admin

• Aurelius/Apache Atlas Admin User: Username: atlas

Password: 1234

2.3.11 Spin up docker-compose environment

To start up the system, execute the following command on the host.

docker compose up -d

Starting up the system may take several minutes.

This is how the system looks in operational state:

When the Apache Atlas container state changes from starting to healthy, then the system is ready.

You are now able to access Aurelius Atlas at the URL: http://$EXTERNAL_HOST:8087/

You can find more information about the product in this page

20 Chapter 2. Deployment options

https://www.aurelius-atlas.com/docs/doc-technicall-manual/en/dev/Options/what.html

Aurelius Atlas Data Governance Solution, Release 0.1

2.3.12 Notes

• How to restart Apache Atlas?

docker exec -it atlas /bin/bash
cd /opt/apache-atlas-2.2.0/bin/
python atlas_stop.py
python atlas_start.py

• How to restart reverse proxy?

docker exec -it reverse-proxy /bin/bash
apachectl restart

There are multiple deployment options:

• Helm charts in a kubernetes cluster for Azure

• Helm charts in a kubernetes cluster for Google

• Standalone deployment using docker compose

2.3. How to deploy Aurelius Atlas with Docker Compose 21

Aurelius Atlas Data Governance Solution, Release 0.1

22 Chapter 2. Deployment options

CHAPTER 3

Technical description

COMING SOON.

23

Aurelius Atlas Data Governance Solution, Release 0.1

24 Chapter 3. Technical description

CHAPTER 4

Aurelius Atlas Backup

Here you will find how to back up Aurelius Atlas for moving instances.

This process will result in zip files of the Apache Atlas data and a Snapshot repository of Elasticsearch indices that
can be used for backup and in the case of disaster recover process.

25

Aurelius Atlas Data Governance Solution, Release 0.1

4.1 Apache Atlas backup

4.1.1 Apache Atlas Backup Process Overview

4.1.2 Acquire access token for Apache Atlas’s admin user

You can use oauth.sh script from https://github.com/aureliusenterprise/Aurelius-Atlas-helm-chart. Example usage:

export ACCESS_TOKEN=$(./oauth.sh --endpoint https://aureliusdev.westeurope.cloudapp.
→˓azure.com/demo/auth/realms/m4i/protocol/openid-connect/token \
--client-id m4i_atlas \
--access atlas $ATLAS_USER_PASSWD)

4.1.3 Export data from Apache Atlas

You can use export-atlas.py script, that wraps Apache Atlas’s Export API to export all data from Atlas. Exam-
ple Usage:

pip install urlpath
python export-atlas.py --token $ACCESS_TOKEN \
--base-url https://aureliusdev.westeurope.cloudapp.azure.com/demo/atlas2/ \
--output out.zip

4.1.4 Import Backup to Atlas Instance

Apache Atlas exposes an Import API from where data is imported from a zip file. Admin user need rights are needed
to use this api. This command will import a file response.zip in the current directory to a specified atlas instance.

26 Chapter 4. Aurelius Atlas Backup

.images/backup-overview.png
https://github.com/aureliusenterprise/Aurelius-Atlas-helm-chart
https://atlas.apache.org/index.html#/ExportAPI

Aurelius Atlas Data Governance Solution, Release 0.1

curl -g -X POST -H 'Authorization: Bearer <Bearer-Token>' -H "Content-Type: multipart/
→˓form-data" -H "Cache-Control: no-cache" -F data=@response.zip <apache-atlas-url>/
→˓api/atlas/admin/import

4.2 Elasticsearch backup

For Elasticsearch backup you can use Snapshot and restore API.

4.2.1 Create a snapshot repository

Create a storage account and a container in Azure

1. Go to https://portal.azure.com/

2. Go to storage accounts service

3. Create a new storage account

4. Set the account name. Optionally adjust the redundancy and access tier

4.2. Elasticsearch backup 27

https://www.elastic.co/guide/en/elasticsearch/reference/current/snapshot-restore.html
https://portal.azure.com/

Aurelius Atlas Data Governance Solution, Release 0.1

28 Chapter 4. Aurelius Atlas Backup

Aurelius Atlas Data Governance Solution, Release 0.1

5. Review and create

6. Once the account is created, go to Containers tab

7. Create a new container

4.2. Elasticsearch backup 29

Aurelius Atlas Data Governance Solution, Release 0.1

8. Go to Access keys tab

Register a repository

1. Access Elastic’s search pod/image, for example:

kubectl -n demo exec -it pod/elastic-search-es-default-0 -- bash

2. Configure Elasticsearch’s keystore with values from the Storage account’s Access keys tab.

30 Chapter 4. Aurelius Atlas Backup

Aurelius Atlas Data Governance Solution, Release 0.1

bin/elasticsearch-keystore add azure.client.default.account
bin/elasticsearch-keystore add azure.client.default.key

3. Optionally set a password for the keystore

bin/elasticsearch-keystore passwd

4. Reload secure settings

curl -X POST -u "elastic:$ELASTIC_PASSWORD" "https://aureliusdev.westeurope.
→˓cloudapp.azure.com/demo/elastic/_nodes/reload_secure_settings?pretty" -H
→˓'Content-Type: application/json' -d "
{

\"secure_settings_password\": \"$ELASTIC_KEYSTORE_PASSWORD\"
}"

5. Create the repository

curl -X PUT -u "elastic:$ELASTIC_PASSWORD" "https://aureliusdev.westeurope.
→˓cloudapp.azure.com/demo/elastic/_snapshot/demo_backup?pretty" -H 'Content-Type:
→˓application/json' -d "
{
\"type\": \"azure\",
\"settings\": {

\"container\": \"aurelius-atlas-elastic-backup\",
\"base_path\": \"backups\",
\"chunk_size\": \"32MB\",

\"compress\": true
}

}"

4.2.2 Create a snapshot

curl -X POST -u "elastic:$ELASTIC_PASSWORD" "https://aureliusdev.westeurope.cloudapp.
→˓azure.com/demo/elastic/_snapshot/demo_backup/snapshot_2" -H 'Content-Type:
→˓application/json' -d '
{

"indices": ".ent-search-engine-documents-*"
}'

4.2. Elasticsearch backup 31

Aurelius Atlas Data Governance Solution, Release 0.1

32 Chapter 4. Aurelius Atlas Backup

CHAPTER 5

Demo environment

The demo environment is open for anyone who want to try out Aurelius Atlas.

• It can be accessed Clicking here

• If you don’t know how to use it, you have an user guide, Click here to access

• Some use cases and how to use the front end can be found Click here to go to the business user guid

33

https://aureliusdev.westeurope.cloudapp.azure.com/demo/auth/
https://docs.models4insight.com/docs/doc-demo-environment/en/latest/contents.html
https://docs.models4insight.com/docs/doc-demo-environment/en/latest/Options/story.html

Aurelius Atlas Data Governance Solution, Release 0.1

34 Chapter 5. Demo environment

CHAPTER 6

Integrations

COMING SOON.

35

Aurelius Atlas Data Governance Solution, Release 0.1

36 Chapter 6. Integrations

CHAPTER 7

Libraries

7.1 Aurelius Atlas

7.1.1 M4I Atlas Core

API

This README provides documentation for the M4I Atlas Core api module, which is designed for interacting with
the Apache Atlas API and retrieving authentication tokens from Keycloak.

• API

– Features

– How to use

* Submodules

* Atlas

· `create_entities <#create_entities>‘__

· `create_glossary <#create_glossary>‘__

· `create_glossary_category <#create_glossary_category>‘__

· `create_glossary_term <#create_glossary_term>‘__

· `create_type_defs <#create_type_defs>‘__

· `delete_entity_hard <#delete_entity_hard>‘__

· `delete_entity_soft <#delete_entity_soft>‘__

· `get_classification_def <#get_classification_def>‘__

· `get_entities_by_attribute <#get_entities_by_attribute>‘__

· `get_entities_by_type_name <#get_entities_by_type_name>‘__

37

Aurelius Atlas Data Governance Solution, Release 0.1

· `get_entity_audit_events <#get_entity_audit_events>‘__

· `get_entity_by_guid <#get_entity_by_guid>‘__

· `get_glossary_by_guid <#get_glossary_by_guid>‘__

· `get_glossary_category_by_guid <#get_glossary_category_by_guid>‘__

· `get_glossary_term_by_guid <#get_glossary_term_by_guid>‘__

· `get_glossary <#get_glossary>‘__

· `get_lineage_by_guid <#get_lineage_by_guid>‘__

· `get_lineage_by_qualified_name <#get_lineage_by_qualified_name>‘__

· `get_type_def <#get_type_def>‘__

· `get_type_defs <#get_type_defs>‘__

· `update_type_defs <#update_type_defs>‘__

* Working with the cache

– Auth

* Usage

* Configuration

Features

The API module contains a set of functions that facilitate communication with the Apache Atlas API. These functions
provide a convenient and efficient way to interact with the Aurelius Atlas platform. The main features of the API
module include:

• Functions for creating, retrieving, updating, and deleting Atlas entities

• Functions for managing entity relationships and classifications

• Support for bulk operations, such as bulk entity creation and deletion

• Error handling and response parsing for API interactions

How to use

To use any of the API functions, import them directly from the library:

from m4i_atlas_core import create_entities, create_glossary, ...

Submodules

The API module is divided into two submodules:

1. `atlas <#atlas>‘__: This submodule contains functions for interacting with the Apache Atlas API, enabling
you to create, read, update, and delete entities and their related metadata.

2. `auth <#auth>‘__: This submodule is responsible for retrieving authentication tokens from Keycloak, which
are required for accessing and utilizing the Apache Atlas API.

38 Chapter 7. Libraries

Aurelius Atlas Data Governance Solution, Release 0.1

Atlas

The atlas submodule provides a collection of functions to interact with the Apache Atlas API. These functions
enable you to create, retrieve, update, and delete various entities, types, and glossaries in Apache Atlas.

The API functions make extensive use of the data object model included with this library, which corresponds to the
data object model for the Apache Atlas API. You can find the official Apache Atlas API documentation at this link.

The following sections include examples demonstrating how to use each API function.

create_entities

The create_entities function allows you to create or update multiple entities in Apache Atlas in bulk. It takes
in a variable number of Entity objects and an optional dictionary of referred entities. It also accepts an optional
access token for authentication purposes.

Here’s an example of how to use the create_entities function:

from m4i_atlas_core import Entity, create_entities

entity1 = Entity(...)
entity2 = Entity(...)

mutations = await create_entities(entity1, entity2)

print(mutations)

This example creates the two given entities in Apache Atlas. The create_entities function returns an
EntityMutationResponse object containing the details of the entities created or updated.

create_glossary

The create_glossary function allows you to create a new glossary in Apache Atlas. It takes in a Glossary
object and an optional access token for authentication purposes.

Here’s an example of how to use the create_glossary function:

from m4i_atlas_core import Glossary, create_glossary

glossary = Glossary(...)

created_glossary = await create_glossary(glossary)

print(created_glossary)

This example creates the given glossary in Apache Atlas. The create_glossary function returns a Glossary
object containing the details of the created glossary.

create_glossary_category

The create_glossary_category function allows you to create a new glossary category in Apache Atlas. It
takes in a GlossaryCategory object and an optional access token for authentication purposes.

Here’s an example of how to use the create_glossary_category function:

7.1. Aurelius Atlas 39

https://atlas.apache.org/api/v2/index.html

Aurelius Atlas Data Governance Solution, Release 0.1

from m4i_atlas_core import GlossaryCategory, create_glossary_category

category = GlossaryCategory(...)

created_category = await create_glossary_category(category)

print(created_category)

This example creates the given glossary category in Apache Atlas. The create_glossary_category function
returns a GlossaryCategory object containing the details of the created category.

create_glossary_term

The create_glossary_term function allows you to create a new glossary term in Apache Atlas. It takes in a
GlossaryTerm object and an optional access token for authentication purposes.

Here’s an example of how to use the create_glossary_term function:

from m4i_atlas_core import GlossaryTerm, create_glossary_term

term = GlossaryTerm(...)

created_term = await create_glossary_term(term)

print(created_term)

This example creates the given glossary term in Apache Atlas. The create_glossary_term function returns a
GlossaryTerm object containing the details of the created term.

create_type_defs

The create_type_defs function allows you to create multiple new type definitions in Apache Atlas in bulk. It
takes in a TypesDef object and an optional access token for authentication purposes.

Note: Only new definitions will be created, and any changes to the existing definitions will be discarded.

Here’s an example of how to use the create_type_defs function:

from m4i_atlas_core import TypesDef, EntityDef, create_type_defs

entity_def = EntityDef(...)

types_def = TypesDef(
entity_defs=[entity_def]

)

created_type_defs = await create_type_defs(types_def)

print(created_type_defs)

This example creates the given entity definition in Apache Atlas. The create_type_defs function returns a
TypesDef object containing lists of type definitions that were successfully created.

40 Chapter 7. Libraries

Aurelius Atlas Data Governance Solution, Release 0.1

delete_entity_hard

The delete_entity_hard function allows you to permanently delete one or more entities from Apache Atlas by
their guid. This operation removes the entities from the database completely.

It takes in a list of guid strings and an optional access token for authentication purposes.

Note: This API requires elevated user permissions.

Here’s an example of how to use the delete_entity_hard function:

from m4i_atlas_core import delete_entity_hard

guids = ["1234-5678-90ab-cdef", "abcd-efgh-ijkl-mnop"]

mutations = await delete_entity_hard(guids)

print(mutations)

This example permanently deletes the entities with the given guids from Apache Atlas. The
delete_entity_hard function returns an EntityMutationResponse object containing the details of the
deleted entities.

delete_entity_soft

The delete_entity_soft function allows you to mark an entity as deleted in Apache Atlas without completely
removing it from the database. The entity’s status is set to DELETED. It takes in the guid of the entity and an optional
access token for authentication purposes.

Here’s an example of how to use the delete_entity_soft function:

from m4i_atlas_core import delete_entity_soft

guid = "1234-5678-90ab-cdef"

mutations = await delete_entity_soft(guid)

print(mutations)

This example marks the entity with the given guid as deleted in Apache Atlas. The delete_entity_soft
function returns an EntityMutationResponse object containing the details of the deleted entity.

get_classification_def

The get_classification_def function allows you to retrieve a classification definition from Apache Atlas
based on its type name. It takes in the type_name of the classification and an optional access token for authentication
purposes.

Note: This function is cached, meaning that repeated calls with the same parameters will return the cached
result rather than making additional requests to the server.

Here’s an example of how to use the get_classification_def function:

from m4i_atlas_core import get_classification_def

type_name = "example_classification"

7.1. Aurelius Atlas 41

Aurelius Atlas Data Governance Solution, Release 0.1

classification_def = await get_classification_def(type_name)

print(classification_def)

This example retrieves the classification definition with the given type_name from Apache Atlas. The
get_classification_def function returns a ClassificationDef object containing the details of the clas-
sification definition.

get_entities_by_attribute

The get_entities_by_attribute function allows you to retrieve entities from Apache Atlas based on a spec-
ified attribute search query. It takes in the attribute_name, attribute_value, and type_name as search
parameters, and an optional access token for authentication purposes.

Note: This function is cached, meaning that repeated calls with the same parameters will return the cached
result rather than making additional requests to the server.

Keep in mind that this search only returns entity headers, which include the guid and type_name of the actual
entity. You can use these headers to query the entities API for more information.

Here’s an example of how to use the get_entities_by_attribute function:

from m4i_atlas_core import get_entities_by_attribute

attribute_name = "example_attribute"
attribute_value = "example_value"
type_name = "example_type"

search_result = await get_entities_by_attribute(attribute_name, attribute_value, type_
→˓name)

print(search_result)

This example retrieves the entities with the given attribute and type from Apache Atlas. The
get_entities_by_attribute function returns a SearchResult object containing the details of the entity
headers that match the search query.

get_entities_by_type_name

The get_entities_by_type_name function allows you to search for all entities in Apache Atlas whose type
matches the given type_name. It takes in the type_name, an optional limit and offset for pagination, and an
optional access token for authentication purposes.

Note: This function is cached, meaning that repeated calls with the same parameters will return the cached
result rather than making additional requests to the server.

Keep in mind that this search only returns entity headers, which include the guid and type_name of the actual
entity. You can use these headers to query the entities API for more information.

Here’s an example of how to use the get_entities_by_type_name function:

from m4i_atlas_core import get_entities_by_type_name

type_name = "example_type"

42 Chapter 7. Libraries

Aurelius Atlas Data Governance Solution, Release 0.1

entities = await get_entities_by_type_name(type_name)

print(entities)

This example retrieves all entities with the given type from Apache Atlas. The get_entities_by_type_name
function returns a list of EntityHeader objects containing the details of the entity headers that match the search
query.

get_entity_audit_events

The get_entity_audit_events function allows you to fetch all audit events for an entity in Apache Atlas based
on its guid. It takes in the entity_guid and an optional access token for authentication purposes.

Note: This function is cached, meaning that repeated calls with the same parameters will return the cached
result rather than making additional requests to the server.

Here’s an example of how to use the get_entity_audit_events function:

from m4i_atlas_core import get_entity_audit_events

entity_guid = "example_guid"

audit_events = await get_entity_audit_events(entity_guid)

print(audit_events)

This example fetches all audit events for the entity with the given guid from Apache Atlas. The
get_entity_audit_events function returns a list of EntityAuditEvent objects containing the details of
the audit events associated with the entity.

get_entity_by_guid

The get_entity_by_guid function allows you to fetch the complete definition of an entity in Apache Atlas based
on its guid. It takes in the guid and an optional entity_type, which can be a string or an object of type T, where
T is a subclass of Entity.

You can also provide optional parameters like ignore_relationships and min_ext_info to customize the
results, as well as an optional access token for authentication purposes.

Note: This function is cached, meaning that repeated calls with the same parameters will return the cached
result rather than making additional requests to the server.

Here’s an example of how to use the get_entity_by_guid function:

from m4i_atlas_core import Entity, get_entity_by_guid

guid = "example_guid"

entity = await get_entity_by_guid(guid, Entity)

print(entity)

This example fetches the complete definition of the entity with the given guid from Apache Atlas. The
get_entity_by_guid function returns an Entity object containing the details of the entity. If the
entity_type parameter is provided, the function will return an instance of that type.

7.1. Aurelius Atlas 43

Aurelius Atlas Data Governance Solution, Release 0.1

get_glossary_by_guid

The get_glossary_by_guid function allows you to fetch a glossary in Apache Atlas based on its guid. It takes
in the guid of the glossary and an optional access token for authentication purposes.

Note: This function is cached, meaning that repeated calls with the same parameters will return the cached
result rather than making additional requests to the server.

Here’s an example of how to use the get_glossary_by_guid function:

from m4i_atlas_core import get_glossary_by_guid

guid = "example_glossary_guid"

glossary = await get_glossary_by_guid(guid)

print(glossary)

This example fetches the glossary with the given guid from Apache Atlas. The get_glossary_by_guid func-
tion returns a Glossary object containing the details of the glossary.

get_glossary_category_by_guid

The get_glossary_category_by_guid function allows you to fetch a glossary category in Apache Atlas
based on its guid. It takes in the guid of the glossary category and an optional access token for authentication
purposes.

Note: This function is cached, meaning that repeated calls with the same parameters will return the cached
result rather than making additional requests to the server.

Here’s an example of how to use the get_glossary_category_by_guid function:

from m4i_atlas_core import get_glossary_category_by_guid

guid = "example_glossary_category_guid"

glossary_category = await get_glossary_category_by_guid(guid)

print(glossary_category)

This example fetches the glossary category with the given guid from Apache Atlas. The
get_glossary_category_by_guid function returns a GlossaryCategory object containing the de-
tails of the glossary category.

get_glossary_term_by_guid

The get_glossary_term_by_guid function allows you to fetch a glossary term in Apache Atlas based on its
guid. It takes in the guid of the glossary term and an optional access token for authentication purposes.

Note: This function is cached, meaning that repeated calls with the same parameters will return the cached
result rather than making additional requests to the server.

Here’s an example of how to use the get_glossary_term_by_guid function:

from m4i_atlas_core import get_glossary_term_by_guid

44 Chapter 7. Libraries

Aurelius Atlas Data Governance Solution, Release 0.1

guid = "example_glossary_term_guid"

glossary_term = await get_glossary_term_by_guid(guid)

print(glossary_term)

This example fetches the glossary term with the given guid from Apache Atlas. The
get_glossary_term_by_guid function returns a GlossaryTerm object containing the details of the
glossary term.

get_glossary

The get_glossary function allows you to fetch all glossaries in Apache Atlas with optional pagination and sort-
ing. The function takes in an optional limit, offset, and sort order, as well as an optional access token for
authentication purposes.

Note: This function is cached, meaning that repeated calls with the same parameters will return the cached
result rather than making additional requests to the server.

Here’s an example of how to use the get_glossary function:

from m4i_atlas_core import get_glossary

limit = 10
offset = 0
sort = 'ASC'

glossaries = await get_glossary(limit=limit, offset=offset, sort=sort)

for glossary in glossaries:
print(glossary)

This example fetches glossaries from Apache Atlas using the specified pagination and sorting options. The
get_glossary function returns a list of Glossary objects containing the details of the glossaries.

get_lineage_by_guid

The get_lineage_by_guid function allows you to fetch the lineage of an entity in Apache Atlas given its guid.

It takes in the guid of the entity, the maximum number of hops to traverse the lineage graph using the depth
parameter (default is 3), the direction parameter to specify whether to retrieve input lineage, output lineage or
both (default is both), and an optional access token for authentication purposes.

Note: This function is cached, meaning that repeated calls with the same parameters will return the cached
result rather than making additional requests to the server.

Here’s an example of how to use the get_lineage_by_guid function:

from m4i_atlas_core import LineageDirection, get_lineage_by_guid

guid = "12345"
depth = 3
direction = LineageDirection.BOTH

lineage_info = await get_lineage_by_guid(guid, depth=depth, direction=direction)

7.1. Aurelius Atlas 45

Aurelius Atlas Data Governance Solution, Release 0.1

print(lineage_info)

This example fetches the lineage of the entity with the given guid from Apache Atlas. The
get_lineage_by_guid function returns a LineageInfo object containing the details of the entity’s lineage.

get_lineage_by_qualified_name

The get_lineage_by_qualified_name function allows you to fetch the lineage of an entity in Apache Atlas
given its qualified_name and type_name.

It takes in the qualified_name and type_name of the entity, the maximum number of hops to traverse the
lineage graph using the depth parameter (default is 3), the direction parameter to specify whether to retrieve
input lineage, output lineage or both (default is both), and an optional access token for authentication purposes.

Note: This function is cached, meaning that repeated calls with the same parameters will return the cached
result rather than making additional requests to the server.

Here’s an example of how to use the get_lineage_by_qualified_name function:

from m4i_atlas_core import LineageDirection, get_lineage_by_qualified_name

qualified_name = "example.qualified.name"
type_name = "example_type_name"
depth = 3
direction = LineageDirection.BOTH

lineage_info = await get_lineage_by_qualified_name(qualified_name, type_name,
→˓depth=depth, direction=direction)

print(lineage_info)

This example fetches the lineage of the entity with the given qualified_name and type_name from Apache
Atlas. The get_lineage_by_qualified_name function returns a LineageInfo object containing the details
of the entity’s lineage.

get_type_def

The get_type_def function allows you to retrieve an entity type definition from Apache Atlas based on its name.
It takes in the input_type of the entity and an optional access token for authentication purposes.

Note: This function is cached, meaning that repeated calls with the same parameters will return the cached
result rather than making additional requests to the server.

Here’s an example of how to use the get_type_def function:

from m4i_atlas_core import get_type_def

input_type = "example_entity_type"

entity_def = await get_type_def(input_type)

print(entity_def)

This example retrieves the entity type definition with the given input_type from Apache Atlas. The
get_type_def function returns an EntityDef object containing the details of the entity type definition.

46 Chapter 7. Libraries

Aurelius Atlas Data Governance Solution, Release 0.1

get_type_defs

The get_type_defs function allows you to retrieve all type definitions in Apache Atlas. It takes an optional access
token for authentication purposes.

Note: This function is cached, meaning that repeated calls with the same parameters will return the cached
result rather than making additional requests to the server.

Here’s an example of how to use the get_type_defs function:

from m4i_atlas_core import get_type_defs

type_defs = await get_type_defs()

print(type_defs)

This example retrieves all type definitions from Apache Atlas. The get_type_defs function returns a TypesDef
object containing the details of the type definitions.

update_type_defs

The update_type_defs function allows you to bulk update all Apache Atlas type definitions. Existing definitions
will be overwritten, but the function will not create any new type definitions.

It takes a types parameter, which is a TypesDef object containing the type definitions to be updated, and an optional
access token for authentication purposes.

Here’s an example of how to use the update_type_defs function:

from m4i_atlas_core import EntityDef, TypesDef, update_type_defs

entity_def = EntityDef(
category="ENTITY",
name="example_entity",
description="An example entity definition"

)

types = TypesDef(entityDefs=[entity_def])

updated_type_defs = await update_type_defs(types)

print(updated_type_defs)

This example updates an existing entity definition with the given types parameter in Apache Atlas. The
update_type_defs function returns a TypesDef object containing the details of the type definitions that were
successfully updated.

Working with the cache

The library utilizes the `aiocache <https://aiocache.aio-libs.org/en/latest/>‘__ library to cache some API function
results. Caching can help reduce server load and improve performance by reusing the results from previous API calls
with the same parameters.

When you call a cached API function, the cache is automatically checked for the result. If the result is present in the
cache, it is returned instead of making a new API call.

7.1. Aurelius Atlas 47

https://aiocache.aio-libs.org/en/latest/

Aurelius Atlas Data Governance Solution, Release 0.1

from m4i_atlas_core import get_entity_by_guid

Call the function once, making an API call
await get_entity_by_guid("12345")

Call the function again, returning the result from the cache
await get_entity_by_guid("12345")

Bypass the cache and make a direct API call
await get_entity_by_guid("12345", cache_read=False)

You can interact with the cache for any API function using the cache property. The following examples demonstrate
how to access and manipulate the cache for the get_entity_by_guid function:

from m4i_atlas_core import get_entity_by_guid

Access the cache for the get_entity_by_guid function
cache = get_entity_by_guid.cache

Delete an item from the cache
await cache.delete("12345")

Clear the entire cache
await cache.clear()

These cache management options enable you to control and optimize the caching behavior of your application, tailor-
ing it to your specific use case.

Auth

The auth submodule provides functionality for retrieving authentication tokens from Keycloak, which are required
for accessing the Apache Atlas API.

Note: This module is specifically designed for use with Keycloak authentication. When Apache Atlas is
configured with basic authentication, obtaining access tokens is not required. Instead, set a username and
password in the ConfigStore for authentication.

Usage

The get_keycloak_token function in the Auth submodule is responsible for retrieving an access token from a
Keycloak instance.

To use the get_keycloak_token function, first import it:

from m4i_atlas_core import get_keycloak_token

Next, call the function to retrieve an access token. You can provide your own Keycloak instance and credentials or
rely on the pre-configured parameters from the ConfigStore as described in the configuration section. If you need
to use multi-factor authentication, provide the one-time access token (TOTP) as well.

Example: Using pre-configured parameters
access_token = get_keycloak_token()

Example: Using custom Keycloak instance and credentials
access_token = get_keycloak_token(keycloak=my_keycloak_instance, credentials=("my_
→˓username", "my_password"))

48 Chapter 7. Libraries

Aurelius Atlas Data Governance Solution, Release 0.1

Example: Using multi-factor authentication (TOTP)
access_token = get_keycloak_token(totp="123456")

The access_token can then be used to authenticate requests to the Apache Atlas API.

Note: Tokens obtained from Keycloak have a limited lifespan. Once a token expires, you will need to
obtain a new access token to continue making authenticated requests.

Configuration

The get_keycloak_token function relies on the following values from the ConfigStore:

Key Description Re-
quired

keycloak.
server.
url

The url of the Keycloak server. In case of a local connection, this includes the hostname and
the port. E.g. http://localhost:8180/auth. In case of an external connection,
provide a fully qualified domain name. E.g. https://www.models4insight.com/
auth.

True

keycloak.
client.id

The name of the Keycloak client. True

keycloak.
realm.
name

The name of the Keycloak realm. True

keycloak.
client.
secret.
key

The public RS256 key associated with the Keycloak realm. True

keycloak.
credentials.
username

The username of the Keycloak user. False

keycloak.
credentials.
password

The password of the Keycloak user. False

Please find more detailed documentation about ‘‘ConfigStore‘ here. <./config>‘__

ConfigStore

ConfigStore is a powerful, singleton-based configuration store providing an easy-to-use interface to store, retrieve,
and manage configuration settings.

• ConfigStore

– Features

– How to use

* Initializing the ConfigStore

* Storing Configuration Settings

* Retrieving Configuration Settings

* Resetting the ConfigStore

7.1. Aurelius Atlas 49

Aurelius Atlas Data Governance Solution, Release 0.1

* Error Handling

Features

• Singleton-based implementation ensures a single source of truth for your configuration settings.

• Ability to load your configuration settings on application start.

• Easy storage and retrieval of configuration settings using simple get and set methods.

• Support for default values and required settings.

• Bulk retrieval and storage of settings using get_many and set_many methods.

How to use

Please find examples of how to use the ConfigStore below.

Initializing the ConfigStore

To start using the ConfigStore, first import the necessary components and initialize the singleton instance:

from config import config
from credentials import credentials

from config_store import ConfigStore

store = ConfigStore.get_instance()
store.load({

**config,

**credentials
})

In this example, the config.py and credentials.py files are imported to obtain the necessary configuration
parameters and credentials. The ConfigStore is then initialized using the get_instance() method, and the
configuration and credential dictionaries are merged and loaded into the ConfigStore using the load() method.

Note: It is recommended to initialize the ConfigStore once when the application starts.

Storing Configuration Settings

To store a configuration setting, use the set method:

store.set("key", "value")

To store multiple configuration settings at once, use the set_many method:

store.set_many(key1="value1", key2="value2", key3="value3")

50 Chapter 7. Libraries

Aurelius Atlas Data Governance Solution, Release 0.1

Retrieving Configuration Settings

To retrieve a configuration setting, use the get method. If the key is not present in the ConfigStore, it returns
None by default.

value = store.get("key")

You can also provide a default value if the key is not found:

value = store.get("key", default="default_value")

If a key is required and not found in the ConfigStore, you can raise a MissingRequiredConfigException
by setting the required parameter to True:

value = store.get("key", required=True)

To retrieve multiple configuration settings at once, use the get_many method:

key1, key2, key3 = store.get_many("key1", "key2", "key3")

You can also provide default values and required flags for the keys:

defaults = {"key1": "default_value1", "key2": "default_value2"}
required = {"key1": True, "key2": False}

key1, key2, key3 = store.get_many("key1", "key2", "key3", defaults=defaults,
→˓required=required)

If all keys are required, you can use the all_required parameter as a shorthand:

key1, key2, key3 = store.get_many("key1", "key2", "key3", all_required=True)

Resetting the ConfigStore

To reset the ConfigStore and remove all stored configuration settings, use the reset method:

store.reset()

This will clear the ConfigStore and reset it to an empty state.

Error Handling

The ConfigStore raises a MissingRequiredConfigException when a required key is not found and no default
value has been provided. This exception can be caught and handled as needed in your application:

from m4i_atlas_core import MissingRequiredConfigException

try:
value = store.get("key", required=True)

except MissingRequiredConfigException as ex:
Handle the case of a missing configuration

7.1. Aurelius Atlas 51

Aurelius Atlas Data Governance Solution, Release 0.1

Data Object Model

This section provides an overview of how to use the data object model provided in the library. The data objects are
designed to represent various types of entities, attributes, classifications, and other components in Aurelius Atlas. They
are used extensively when interacting with the Atlas API.

• Data Object Model

– Features

– How to use

* Submodules

* Serialization and deserialization

· From JSON to Instance

· Unmapped attributes

· From Instance to JSON

* Marshmallow Schema

· Data Validation

· Bulk Serialization and Deserialization

Features

The entities module provides a collection of data objects designed to represent different types of entities, attributes,
classifications, and other components in Aurelius Atlas. The main features of the entities module include:

• Data objects related to the Apache Atlas API

• Data objects related to the Aurelius Atlas metamodel

• Convenience methods for converting data objects to and from JSON format

• Marshmallow schemas for data validation, serialization, and deserialization

How to use

To use the data objects from the library in your code, you can easily import them. For example, if you want to work
with the Entity data object, you can import it as follows:

from m4i_atlas_core import Entity

Once you have imported the desired data object, you can create instances, access their properties, and manipulate them
as needed.

Submodules

The entities module is organized into two main submodules:

• core: This submodule includes data objects that correspond to the Apache Atlas API. These objects are used
for representing entities, classifications, relationships, and other components as defined in Apache Atlas.

52 Chapter 7. Libraries

Aurelius Atlas Data Governance Solution, Release 0.1

• data_dictionary: This submodule contains data objects that are specific to the Aurelius Atlas metamodel.
These objects extend or customize the core data objects to better suit the requirements of the Aurelius Atlas
platform.

Serialization and deserialization

Each data object is a `dataclass <https://docs.python.org/3/library/dataclasses.html>‘__ and is designed to be
easily serialized and deserialized using the `dataclasses_json <https://lidatong.github.io/dataclasses-json/>‘__
library. This allows for convenient conversion between JSON and the corresponding data object instances.

The dataclasses_json library provides additional features such as camelCase letter conversion and other
customizations.

Below are some examples of how to use a data object, such as BusinessDataDomain, to convert between its
instance and JSON representation.

From JSON to Instance

You can convert JSON data to an Entity instance using the from_json() method. Suppose you have the follow-
ing JSON representation of a data domain:

{
"attributes": {
"key": "value",
"name": "example",
"qualifiedName": "data-domain--example"

},
"guid": "12345",
"typeName": "m4i_data_domain"

}

The example below demonstrates how to create a BusinessDataDomain instance from the given JSON data:

from m4i_atlas_core import BusinessDataDomain

json_data = '''JSON string here'''
domain_instance = BusinessDataDomain.from_json(json_data)

Unmapped attributes

In the given example, the key attribute is not explicitly defined as part of the schema for BusinessDataDomain.
In such cases, the attributes field of the resulting instance will include an unmapped_attributes field. This field
offers flexibility when working with entities containing additional or custom attributes not specified in the predefined
data model. The unmapped_attributes field acts as a catch-all for these attributes, ensuring they are preserved
during the conversion process between JSON and the Entity instance.

To access an unmapped attribute, you can use the following code:

value = domain_instance.attributes.unmapped_attributes["key"]

When converting any Entity instance back to JSON, the unmapped attributes will be included as part of the
attributes field once again.

7.1. Aurelius Atlas 53

https://docs.python.org/3/library/dataclasses.html
https://lidatong.github.io/dataclasses-json/

Aurelius Atlas Data Governance Solution, Release 0.1

From Instance to JSON

To convert an Entity instance back to its JSON representation, use the to_json() method. The example below
shows how to convert the BusinessDataDomain instance we created previously back to its JSON representation:

json_data = domain_instance.to_json()

This will return a JSON string that represents the data domain instance, including any unmapped attributes.

Marshmallow Schema

Each data object in the library is equipped with a built-in Marshmallow schema. These schemas are valuable tools for
validating, serializing, and deserializing complex data structures. By utilizing Marshmallow schemas, you can ensure
that the data being passed to or returned from the API adheres to the correct structure and data types.

To access the Marshmallow schema for any data object, use the schema() method:

from m4i_atlas core import Entity

schema = Entity.schema()

Data Validation

Marshmallow schemas associated with the data objects in this library can be employed to perform data validation. The
following example demonstrates how to use a Marshmallow schema to validate JSON input data:

from m4i_atlas_core import Entity

Load the schema for the Entity data object
entity_schema = Entity.schema()

Validate input data
input_data = {

"guid": "123",
"created_by": "user",
"custom_attributes": {"key": "value"},

}

errors = entity_schema.validate(input_data)

if errors:
print(f"Validation errors: {errors}")

else:
print("Data is valid")

In this example, the Entity data object from the library is used to validate the input_data JSON using its
associated Marshmallow schema. If the data is valid, the validate method will not return any errors, and the “Data
is valid” message will be displayed. If the data is invalid, a dictionary containing the validation errors will be returned.

This approach can be applied to other data objects in the library for validating JSON input data using their respective
Marshmallow schemas. To read more about data validation with Marshmallow, refer to the official documentation.

54 Chapter 7. Libraries

https://marshmallow.readthedocs.io/en/stable/quickstart.html#validation

Aurelius Atlas Data Governance Solution, Release 0.1

Bulk Serialization and Deserialization

Marshmallow schemas can be utilized for bulk serialization and deserialization of complex data structures. This is
particularly useful when working with lists of data objects.

To serialize a list of data objects into a JSON format, you can use the dump method with the many=True option:

from m4i_atlas_core import Entity

Sample list of Entity data objects
entities = [

Entity(guid="1", created_by="user1", custom_attributes={"key1": "value1"}),
Entity(guid="2", created_by="user2", custom_attributes={"key2": "value2"}),

]

Load the schema for the Entity data object
entity_schema = Entity.schema()

Serialize the list of entities
serialized_data = entity_schema.dump(entities, many=True)

print("Serialized data:", serialized_data)

To deserialize a JSON list of data objects, you can use the load method with the many=True option:

from m4i_atlas_core import Entity

Sample JSON list of entity data
json_data = [

{"guid": "1", "created_by": "user1", "custom_attributes": {"key1": "value1"}},
{"guid": "2", "created_by": "user2", "custom_attributes": {"key2": "value2"}},

]

Load the schema for the Entity data object
entity_schema = Entity.schema()

Deserialize the JSON list of entities
deserialized_data = entity_schema.load(json_data, many=True)

print("Deserialized data:", deserialized_data)

In both examples, the many=True option is specified to indicate that the data being processed is a list. You can apply
the same approach with other data objects in the library to perform bulk serialization and deserialization using their
corresponding Marshmallow schemas.

Welcome to the M4I Atlas Core library!

This library is designed to streamline your interactions with Aurelius Atlas, providing a comprehensive data object
model for all entities related to Aurelius Atlas and a set of functions to facilitate communication with the Aurelius
Atlas API.

With this library, you can easily create, retrieve, and manage Atlas entities, enabling a seamless integration with the
Aurelius Atlas Data Governance solution.

In this README, you will find detailed instructions on how to install, configure, and use the M4I Atlas Core library to
simplify your work with the Aurelius Atlas platform.

• M4I Atlas Core

– Features

7.1. Aurelius Atlas 55

Aurelius Atlas Data Governance Solution, Release 0.1

– Installation

* Using the Dev Container

· Using the Dev Container with Visual Studio Code

· Using the Dev Container with GitHub Codespaces

* Local installation

– How to use

* Submodules

* Authentication

* Configuration

· Keyloak authentication

· Atlas authentication

* Example Scripts

– Testing

Features

The M4I Atlas Core library offers a comprehensive set of features designed to simplify your interactions with the
Aurelius Atlas platform. The main features of the library include:

• A rich data object model for all entities related to Aurelius Atlas

• A set of API functions to facilitate communication with the Apache Atlas API

• A centralized configuration store for managing settings and credentials

Installation

Below are instructions on various ways to install this project.

Using the Dev Container

This project includes a Visual Studio Code development container to simplify the setup process and provide a consis-
tent development environment. You can use the dev container with either Visual Studio Code locally or with GitHub
Codespaces.

Using the Dev Container with Visual Studio Code

Note: The following instructions assume that you have already installed Docker and Visual Studio Code.

1. Install the Remote Development extension pack in Visual Studio Code.

2. Open the project folder in Visual Studio Code.

3. Press F1 to open the command palette, and then type “Remote-Containers: Open Folder in Container. . . ” and
select it from the list. Alternatively, you can click on the green icon in the bottom-left corner of the VS Code
window and select “Reopen in Container” from the popup menu.

56 Chapter 7. Libraries

https://www.docker.com/
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.vscode-remote-extensionpack

Aurelius Atlas Data Governance Solution, Release 0.1

4. VS Code will automatically build the container and connect to it. This might take some time for the first run as
it downloads the required Docker images and installs extensions.

5. Once connected, you’ll see “Dev Container: M4I Atlas Core Dev Container” in the bottom-left corner of the VS
Code window, indicating that you are now working inside the container.

6. You’re all set! You can now develop, build, and test the project using the provided development environment.

Using the Dev Container with GitHub Codespaces

Note: GitHub Codespaces is a paid service. At the time of writing, it offers 60 hours of development time
for free every month. Use with care.

1. Ensure that you have access to GitHub Codespaces.

2. Navigate to the GitHub repository for the project.

3. Click the “Code” button and then select “Open with Codespaces” from the dropdown menu.

4. Click on the “+ New codespace” button to create a new Codespace for the project.

5. GitHub Codespaces will automatically build the container and connect to it. This might take some time for the
first run as it downloads the required Docker images and installs extensions.

6. Once connected, you’ll see “Dev Container: M4I Atlas Core Dev Container” in the bottom-left corner of the VS
Code window, indicating that you are now working inside the container.

7. You’re all set! You can now develop, build, and test the project using the provided development environment.

Local installation

If you prefer not to use the dev container, you’ll need to manually set up your development environment. Please follow
the instructions below:

Please ensure your Python environment is on version 3.9. Some dependencies do not work with any previous
versions of Python.

To install m4i-atlas-core and all required dependencies to your active Python environment, please run the
following command from the project root folder:

pip install -e . --user

To install the project including development dependencies, please run the following command:

pip install -e .[dev] --user

How to use

This section provides an overview of how to use the M4I Atlas Core library, including configuration options and
example scripts to help you get started.

Submodules

The M4I Atlas Core library consists of several submodules to help you efficiently interact with the Aurelius Atlas
platform. Each submodule serves a specific purpose and contains related functionality. Below is a brief description of
each submodule:

7.1. Aurelius Atlas 57

https://github.com/features/codespaces

Aurelius Atlas Data Governance Solution, Release 0.1

• api: This submodule provides a set of functions that facilitate communication with the Apache Atlas API. It
includes functions for creating, retrieving, updating, and deleting entities, as well as handling relationships,
classifications, and other aspects of the Aurelius Atlas platform.

• config: This submodule includes the ConfigStore class, which is responsible for managing configuration
settings for the library. It allows you to store, access, and update the configuration settings required to interact
with the Atlas API.

• entities: This submodule contains the data objects related to the Apache Atlas API and the Aurelius Atlas
metamodel.

Authentication

All Aurelius Atlas API endpoints are protected through Keycloak, which requires a valid authentication token for
every request. The `api <./api>‘__ module includes functions for retrieving an authentication token from Keycloak.
When using API functions, you should pass the authentication token through the access_token parameter.

Here’s an example of how to authenticate an API request:

from m4i_atlas_core import get_entity_by_guid, get_keycloak_token

access_token = get_keycloak_token()

entity = await get_entity_by_guid("1234", access_token=access_token)

Refer to the Configuration section for details on setting up the required parameters for Keycloak authentication.

Configuration

Before you begin using any functions from the library, you will need to configure certain parameters and credentials
for Atlas.

In the scripts directory, make a copy of config.sample.py and credentials.sample.py and rename the
files to config.py and credentials.py, respectively. Set the configuration parameters and credentials for Atlas
as needed.

Note: When using the Dev Container, the sample files are copied for you automatically. However, you
will still have to set the configuration parameters yourself.

Name Re-
quired

Description

atlas.
server.url

True The base url for the Apache Atlas API. E.g. https://www.
aurelius-atlas.com/api/atlas.

All configuration parameters should to be loaded into the ConfigStore on application startup. Find more detailed
documentation about the ‘‘ConfigStore‘ here. <./config>‘__

Keyloak authentication

When using the default Keycloak authentication, the following additional configuration parameters should be provided:

58 Chapter 7. Libraries

Aurelius Atlas Data Governance Solution, Release 0.1

Name Re-
quired

Description

keycloak.server.url True The url of the Keycloak server. E.g. https://www.
aurelius-atlas.com/auth.

keycloak.client.id True The name of the Keycloak client. The default client id is
m4i_atlas.

keycloak.realm.name True The name of the Keycloak realm. The default realm name is m4i.
keycloak.client.
secret.key

True The public RS256 key associated with the Keycloak realm.

keycloak.credentials.
username

False The username of the Keycloak user. The built-in username is
atlas.

keycloak.credentials.
password

False The password of the Keycloak user.

Note: Keycloak credentials for built-in Aurelius Atlas users are automatically generated upon deployment
and are available from the deployment log.

Atlas authentication

When Keycloak authentication is disabled, the default Apache Atlas user management system authenticates all re-
quests. In this case, set the following additional configuration parameters:

Name Re-
quired

Description

atlas.credentials.
username

True Your username for Apache Atlas. The built-in username is
atlas.

atlas.credentials.
password

True Your password for Apache Atlas.

Example Scripts

The library includes example scripts to demonstrate how to interact with the Atlas API using the provided data object
models and functions. These scripts can be found in the scripts directory of the project. Below is a brief overview of
some example scripts:

• load_type_defs.py: This script loads the type definitions into Atlas. The main function in
load_type_defs.py can be adjusted to determine which set of type definitions to load. Please note that if
a subset of the set already exists, the loading of the type definitions will fail.

Testing

This project uses pytest as its unit testing framework. To run the unit tests, please install pytest and then execute
the pytest command from the project root folder.

Unit tests are grouped per module. Unit test modules are located in the same folder as their respective covered modules.
They can be recognized by the test__ module name prefix, followed by the name of the covered module.

7.1. Aurelius Atlas 59

Aurelius Atlas Data Governance Solution, Release 0.1

7.1.2 Data Quality

Is used to determine the quality of various entities already loaded into DMP’s governance tool - Apache Atlas. It
verifies data loaded against various m4i types (like m4i_data_domain, m4i_data_entity) on quality measures like
completeness, uniqueness etc.

There are two main categories of Data that is generated for each m4i Type entity.

• Attributes related data consists of details about entity attributes where certain quality metrics can be applied like

– completeness – whether we have a value for an attribute

– uniqueness – whether values are unique for different entities

• Relationships related data consists of details about entity relationships where certain quality metrics can be
applied like

– completeness – whether we have correct relationships between two entities.

These rules are inherited from m4i_data_management repository.

Configuring Rules

An important aspect of Data Quality is the rules that are applied to each entity. There are separate rules for attributes
and relationships. However, the structure is same and follows as below.

id: id

expressionVersion: version of expression

expression: expression to evaluate completeness(‘name’)

qualifiedName: unique name for the rule example:m4i_data_domain–name

qualityDimension: Rule Category - explained below

ruleDescription: Description of the rule ex:name is not None and is not empty

active: 0 | 1

type: attribute | relationship

Rule Category Rule Description
completeness degree to which data is not null
accuracy degree to which a column conforms to a standard
validity degree to which the data comply with a predefined structure
uniqueness degree to which the data has a unique value
timeliness the data should be up to date

Example

id: 1

expressionVersion: 1

expression: completeness(‘name’)

qualifiedName: m4i_data_domain–name

qualityDimension: completeness

ruleDescription: name is not None and is not empty

60 Chapter 7. Libraries

Aurelius Atlas Data Governance Solution, Release 0.1

active: 1

type: attribute

Rules are maintained in rules directory of the package and can be found for each m4i type.

Running the code

We can execute run.py file. This will generates 6 files in output folder of the package. Three each for attributes and
relationships. In addition, generated data is pushed to Elasticsearch indexes. We can configure pre-fix of indexes by
updating elastic_index_prefix for both attributes and relationships related data.

• Summary – gives a summary of the data quality results.

• Complaint Data – gives information about complaints.

• Non-complaint Data – gives information about non-complaints.

Dependency

To Run this package, we need to have below packages installed * m4i_atlas_core – communicates with Apache Atlas
* vox-data-management – communicates for Quality metric already defined * elasticsearch – communicates with
ElasticSearch

Installation

Please ensure your Python environment is set on version 3.7. Some dependencies do not work with any later versions
of Python. Basically, this is a requirement for underlying package m4i_data_management

To install m4i-atlas-core and all required dependencies to your active Python environment. Activate it using:

source <venv_name>binactivate or create new python3.7 -m venv <venv_name>

Configurations and Credentials

Please make a copy of config.sample.py and credentials.sample.py and rename the files to config.py and credentials.py
respectively. Please set the configuration parameters and credentials for atlas and elastic as below.

credentials.py Should contain two dictionaries viz credential_atlas and credential_elastic

Name Description
creden-
tial_atlas[atlas.credentials.username]

The Username to be used to access the Atlas Instance.

creden-
tial_atlas[atlas.credentials.password]

The Password to be used to access the Atlas Instance must correspond to the
Username given.

creden-
tial_elastic[elastic_cloud_id]

Service URL for Elastic.

creden-
tial_elastic[elastic_cloud_username]

The Username to be used to access the Elastic Instance.

creden-
tial_elastic[elastic_cloud_password]

The Password to be used to access the Elastic Instance must correspond to
the Username given.

config.py Should contain two dictionaries viz config_elastic and config_atlas

7.1. Aurelius Atlas 61

Aurelius Atlas Data Governance Solution, Release 0.1

Name Description
config_elastic[elastic_index_prefix] Define prefix for the elastic Index where data will be pushed to
config_atlas[atlas.server.url] The Server URL that Atlas runs on, with /api/atlas post fix.
config_atlas[atlas.credentials.token] Add Keycloak access token

Execution

1. Create the Python Environment. How to do this can be found in this file under Installation

2. Fill in the Configurations and Credentials as indicated in this file under Configurations and Credentials

3. Run scriptsrun.py to create 6 files in output folder, 3 each for Attributes and Relationships. Same data is also pushed
to Elastic.

1. creates/updates an index for attributes as ‘<prefix>‘_quality_attr_[summary | complaint | non_complaint]

2. creates/updates an index for relationships as ‘<prefix>‘_quality_rels_[summary | complaint | non_complaint]

7.1.3 M4I Data Management

This library contains all core functionality around data management for Models4Insight.

Installation

Please ensure your Python environment is on version 3.7. Some dependencies do not work with any later versions of
Python.

To install m4i-data-management and all required dependencies to your active Python environment, please run the
following command from the project root folder:

1)Set up a virtual environment: Use this command in the root folder,

virtualenv --python "C:\\Python37\\python.exe" venv.

2) Then activate the virtual enviroment with this command:

.\env\Scripts\activate

3) Install the library

pip install -e .

To install `m4i-data-management` including development dependencies, please run the
→˓following command instead:

pip install -e .[dev]

Install m4i_data_management:
You can clone m4i_data_management from this link https://gitlab.com/m4i/m4i_data_
→˓management

62 Chapter 7. Libraries

Aurelius Atlas Data Governance Solution, Release 0.1

Please make a copy of config.sample.py and credentials.sample.py and rename the files to config.py and credentials.py
respectively.

The config.py and credentials.py files should be located in the root folder of the project, or otherwise on the
PYTHON_PATH.

Please remember to set the configuration parameters you want to use.

Testing

This project uses pytest as its unit testing framework. To run the unit tests, please install pytest and then execute the
pytest command from the project root folder.

Unit tests are grouped per module. Unit test modules are located in the same folder as their respective covered modules.
They can be recognized by the test__ module name prefix, followed by the name of the covered module.

Contacts

Name | Role | Email |
—————– | ——————- | —————————– |
Thijs Franck | Lead developer | thijs.franck@aureliusenterprise.com |

7.1.4 m4i_data_dictionary_io

This library contains all core functionality for reading Data Dictionary excels and pushing the defined entities in bulk
by type to atlas. Data Dictionary is expected to be in the same format as the template Data Dictionary.

Installation

Please ensure your Python environment is on version 3.9. Some dependencies do not work with any previous versions
of Python.

To install m4i-data-dictionary-io and all required dependencies to your active Python environment, please run the
following command from the project root folder:

pip install -e .

Configurations and Credentials

In the scripts directory. Please make a copy of config.sample.py and credentials.sample.py and rename the files to
config.py and credentials.py respectively. Please set the configuration parameters and credentials for atlas.

Server name Description
atlas.server.url The Server Url that Atlas runs on, with ‘/api/atlas’ post fix.
at-
las.credentials.username

The Username to be used to access the Atlas Instance.

at-
las.credentials.password

The Password to be used to access the Atlas Instance must correspond to the Username
given.

7.1. Aurelius Atlas 63

mailto:thijs.franck@aureliusenterprise.com

Aurelius Atlas Data Governance Solution, Release 0.1

Execution

1. Create the Python Environment. How to do this can be found in this file under Installation

2. Fill in the Configurations and Credentials as indicated in this file under Configurations and Credentials

3. Run main.py in the terminal to load the definitions.

Testing

This project uses pytest as its unit testing framework. To run the unit tests, please install pytest and then execute the
pytest command from the project root folder.

Unit tests are grouped per module. Unit test modules are located in the same folder as their respective covered modules.
They can be recognized by the test__ module name prefix, followed by the name of the covered module.

library git-
lab/github?

purpose remarks

m4i_governance_data_qualitygitlab data governance quality
checks

merge or branches required

m4i_atlas_core github core entities for apache atlas
m4i data man-
agement

gitlab writing and reading from
kafka and elastic

many dependencies like confluent kafka and elastic ,
which are not always required stale branch

linage_restAPI gitlab
and
github

backend for publish-
ing data into atlas in a
simplified way

in gitlab several unmerged branches

m4i_data_dictionary_iogitlab importing Data Dictionary
excels

main branch is rc_1.0.0. should be changed to main

Gov UI Back-
end

gitlab backend for providing data for the governance dash-
board in old UI; main branch is rc_1.0.0. should be
changed to main

atlas-m4i-
connector

gitlab integration m4i with atlas; merge required

64 Chapter 7. Libraries

Aurelius Atlas Data Governance Solution, Release 0.1

7.2 Models4Insight

library git-
lab/github?

purpose remarks

Models4Insight gitlab and
github

Frontend gitlab version more up to date then github version; 54
branches! Cleanup required?

m4i-keycloak-
bulma

gitlab keycloak templates for M4I

m4i_analytics_extensiongitlab extensions to m4i_analytics
analytics li-
brary

gitlab and
github

functionality to inter-
act with m4i

lot of stuff which is no longer relevant. . . requires thor-
ough check whether the APIs are still all ok.

RestApi2 gitlab backend for M4I
RestUser gitlab keycloak integration

backend for M4I
Data2model
backend
model compari-
son backend
Consistency
check backend

7.2. Models4Insight 65

Aurelius Atlas Data Governance Solution, Release 0.1

66 Chapter 7. Libraries

CHAPTER 8

Support / Maintenance

8.1 FAQS

8.1.1 General

COMING SOON.

67

Aurelius Atlas Data Governance Solution, Release 0.1

8.1.2 Integrations

COMING SOON.

8.1.3 Demo environment

COMING SOON.

68 Chapter 8. Support / Maintenance

Aurelius Atlas Data Governance Solution, Release 0.1

8.1.4 Troubleshooting deployment

Connection is not safe

After many deployment attempts, it can happen that the reflector pod is not restarted automatically.

1. Check if there is a secret called letsencrypt-secret-aureliusdev in our namespace:

kubectl -n <namespace> get secrets

2. If it is not there, then find the reflector pod in the default namespace:

kubectl get all

3. Delete reflector pod (A new one will be created automatically):

kubectl -n <namespace> delete pod/<podname>

Flink-jobmanager and taskmanager is not running

Flink-jobmanager is not running, and Flink-taskmanager keeps restarting, but other pods are fine.

To check if all pods are running:

kubectl -n <namespace> get all

Go into the Atlas pod, and see the error message:

8.1. FAQS 69

Aurelius Atlas Data Governance Solution, Release 0.1

kubectl -n <namespace> exec -it <pod/chart-id-atlas-0> -- bash
cd opt/apache-atlas-2.2.0/logs
cat application.log

If you see an error like: org.apache.solr.client.solrj.impl.HttpSolrClient$RemoteSolrException:
Error from server at http://10.20.129.33:9838/solr: Can not find the
specified config set: vertex_index

Then the vertex_index collection could not be created.

To solve it, we can create it manually in Solr client, then restart the Atlas pod.

1. We forward port 9838, so we can access Solr web client:

kubectl -n demo port-forward <pod/chart-id-atlas-0> 9838:9838

2. Open the web client on localhost:9838/solr

3. Go to the Collections menu, and add a collection.

(a) Name: vertex_index

(b) Config set: _default

(c) maxShardsPer: -1

4. From another cmd, open the atlas pod again:

kubectl -n <namespace> exec -it <pod/chart-id-atlas-0> -- bash
cd opt/apache-atlas-2.2.0/
bin/atlas_stop.py
nohup bin/atlas_start.py &

5. You can exit it with CTR+C and to check if it is running:

jobs

If an entity are not getting created

It could be that a flink job has failed.

1. Check whether all flink jobs are running. if not, then restart them:

kubectl -n <namespace> exec -it <pod/flink-jobmanager-pod-name> -- bash

cd py_libs/m4i-flink-tasks/scripts

/opt/flink/bin/flink run -d -py <name_of_job>.py

2. Determine if the entity was created within the apache atlas.

3. Determine if the entity was created in the elastic.

PS. Be aware of resource problems

8.2 Contact

• Email

70 Chapter 8. Support / Maintenance

mailto:info@aureliusenterprise.com

Aurelius Atlas Data Governance Solution, Release 0.1

• Website

8.3 User comunities

• Github

• Linkedin

8.3. User comunities 71

https://aureliusenterprise.com/
o%09https:/github.com/aureliusenterprise
https://www.linkedin.com/company/aurelius-enterprise/mycompany/

Aurelius Atlas Data Governance Solution, Release 0.1

72 Chapter 8. Support / Maintenance

CHAPTER 9

About the company

COMING SOON.

73

Aurelius Atlas Data Governance Solution, Release 0.1

74 Chapter 9. About the company

CHAPTER 10

Data Quality

Data quality refers to the overall fitness for use of data. It describes the degree to which data meets the requirements of
its intended use, which can vary depending on the context, application, and user. Evaluating data quality ensures that
the data is reliable, relevant, and actionable, and can help identify areas for improvement in data collection, storage,
and management processes. Ultimately, the goal of data quality management is to ensure that data can be trusted and
used effectively to support decision-making, analysis, and other business processes. Since actual data is required for
this assessment, this analysis can not be done in Aurelius Atlas itself, but is performed on the related data storage
system. The quality results however, can be documented in Aurelius Atlas. This documentation contains the checked
rules as well as the actual data quality compliance results.

Data quality results are then propagated along the breadcrumb of the field to datasets, collections and systems on the
technical side and to data attributes, data entities and data domains on the business side.

10.1 Conceptual view

Thus, conceptually data quality results can be added in Aurelius Atlas. It consists of 3 parts:

• the actual data quality result

• an associated data quality Atlas entity

• a field which is associated with the quality result

10.1.1 Data quality result

Data quality result consists of multiple fields:

• a unique ID, which can be human readable

• a qualityguid, which is a guid of the actual quality result

• a data quality result (dqscore), which is a boolean value of 0 or 1, where 0 means 0% compliance and 1 means
100% compliance

75

Aurelius Atlas Data Governance Solution, Release 0.1

10.1.2 Data quality rule

A data quality rule is described in Aurelius Atlas as type data quality rule. Currently you can not enter this quality rule
via the front end.

A data quality rule consists of :

• name: of the associated rule

• description: explaining the thought behind the rule

• expression: which is constructuced from an expression language on the level of the data quality

• business rule ID: which is usually just a number used for ordering the rules when presented in the front end

• dimension

Rule Category Rule Description
completeness degree to which data is not null
accuracy degree to which a column conforms to a standard
validity degree to which the data comply with a predefined structure
uniqueness degree to which the data has a unique value
timeliness the data should be up to date

10.1.3 Associated field

A field can be used in multiple data quality rules, thus a field may have multiple data quality results of different data
quality rule dimensions. A field is referenced by the following information:

• qualified name of the field used for the assessment

• fieldguid, that is the guid of the referenced field

• qualified field name

10.2 Technical view

Technically, data quality is represented in Aurelius Atlas as an Apache Atlas entity and as data in the metadata store
(elastic app search). The field as well as a description of the data quality rule are entities in Aurelius Atlas, while the
actual data quality result is stored as metadata in elastic app search.

10.2.1 Data quality result

The data quality result in elastic app search is stored in the atlas-dev-quality engine. An example of the required
documents is shown below. It contains all the conceptual elements explained in the previous section.

{
"id": "nl3--nl3plant--nl3plant001--workorderid--8",
"fields": [{

"name": "id",
"value": "nl3--nl3plant--nl3plant001--workorderid--8",
"type": "enum"

}, {
"name": "fieldqualifiedname",
"value": "nl3--nl3plant--nl3plant001--workorderid",

76 Chapter 10. Data Quality

Aurelius Atlas Data Governance Solution, Release 0.1

"type": "string"
}, {

"name": "fieldguid",
"value": "21f89d8f-4e10-4419-b135-6a84d55ed63f",
"type": "string"

}, {
"name": "qualityguid",
"value": "61484c0e-89db-49ff-a67a-2e3bb2e9219c",
"type": "string"

}, {
"name": "dataqualityruledescription",
"value": "This field has to be filled at all times",
"type": "string"

}, {
"name": "expression",
"value": "Completeness('workorderid')",
"type": "string"

}, {
"name": "dqscore",
"value": "1.0",
"type": "float"

}, {
"name": "dataqualityruledimension",
"value": "Completeness",
"type": "string"

}, {
"name": "businessruleid",
"value": "8.0",
"type": "float"

}, {
"name": "name",
"value": "Rule 8",
"type": "string"

}, {
"name": "guid",
"value": "61484c0e-89db-49ff-a67a-2e3bb2e9219c",
"type": "string"

}, {
"name": "qualityqualifiedname",
"value": "nl3--nl3plant--nl3plant001--workorderid--8",
"type": "string"

}, {
"name": "datadomainname",
"value": "plant data",
"type": "string"

}
]

}

10.2.2 Data quality rules

Data quality rules are Apache Atlas entities, which can not be entered via the Aurelius Atlas frontend at the moment.
We are working on it.

The entity contains the required fields as properties, such that they referential integrity between data quality results
and the data quality rule entity are guaranteed. An example of a data quality rule entity in json format as it is stored in
Apache Atlas is shown below.

10.2. Technical view 77

Aurelius Atlas Data Governance Solution, Release 0.1

{
"referredEntities": {},
"entity": {

"typeName": "m4i_data_quality",
"attributes": {

"expression": "completeness('HIER_ORG')",
"qualifiedName": "nl1--nl1hr--nl1hr001--hier_organization--30

→˓",
"displayName": null,
"description": null,
"active": true,
"businessRuleDescription": "",
"ruleDescription": "This field has to be filled at all times",
"name": "nl1--nl1hr--nl1hr001--hier_organization--30",
"filterRequired": true,
"id": 30,
"qualityDimension": "Completeness",
"expressionVersion": "1",
"fields": [{

"guid": "0df94338-1afc-455c-b9d5-c3d0e36d1dac
→˓",

"typeName": "m4i_field",
"uniqueAttributes": {

"qualifiedName": "nl1--nl1hr--
→˓nl1hr001--hier_organization"

}
}

]
},
"guid": "3059989c-364d-4404-92ef-c1e719014f00",
"isIncomplete": false,
"relationshipAttributes": {

"fields": [{
"guid": "0df94338-1afc-455c-b9d5-c3d0e36d1dac

→˓",
"typeName": "m4i_field",
"entityStatus": "ACTIVE",
"displayText": "HIER_ORGANIZATION",
"relationshipType": "m4i_data_quality_field_

→˓assignment",
"relationshipGuid": "35b3502c-38a7-4524-b266-

→˓2fd46888e5f2",
"relationshipStatus": "ACTIVE",
"relationshipAttributes": {

"typeName": "m4i_data_quality_field_
→˓assignment"

}
}

],
},

}
}

The relationship attribute fields is referencing the related field. The remaining values are local to the entity and some
of them are referenced and/or taken over in the data quality result data structure.

78 Chapter 10. Data Quality

Aurelius Atlas Data Governance Solution, Release 0.1

10.2.3 Propagation of data quality results

After creating the data quality rule entity in Apache Atlas and data quality results in the metadata store, the data quality
is accessible at the field. To propagate data quality results through the complete governance tree, currently there is
a script required which can be called periodically. In a later version of Aurelius Atlas, all changes to data quality or
the governance structures in Aurelius Atlas will also propagate data quality results. A description on how to setup the
script and how to run it will follow shortly.

10.2.4 Definitions of data quality rules

They are located at the m4i-data-management repository quality rules You can find all the data quality rules, that you
wish to apply on a dataset. They are explanations of each rule and examples on how to use them. These are they data
quality rules that are applied on a dataset.

Below is a brief description of each rule.

10.2. Technical view 79

https://github.com/AthanasiosAurelius/m4i-data-management/tree/Athanasios/m4i_data_management/core/quality/rules

Aurelius Atlas Data Governance Solution, Release 0.1

Rule Description
1. Bijacency Checks whether or not the values in the given column_a

and column_b only occur as a unique combination.
2. Compare First characters Checks whether the first ‘number_of_characters’ val-

ues in first_column_name and second_column_name
are similar, and if the values are None or NaN.

3. Check First Characters using Prefix Checks whether the first ‘number_of_characters’ val-
ues starting without in first_column_name and sec-
ond_column_name are similar, and if column_name
does not start with any of the given prefixes, and if the
values are None or NaN.

4. Check Completeness Checks whether the values in the column with the given
column_name are None or NaN.

5. Check Conditional Completeness Checks whether or not the values in the given
value_column are None or NaN.

6. Check Unallowed Text Checks if values in the column with the given
value_column contain a specific unallowed text.

7. Check Conditional Value Checks whether the values in the given value_column
match (one of) the expected value(s) for a given key in
the key_column.

8. Check Character Count Checks how many times the values in the column with
the given column_name contain a specific character.

9. Check Matching Pattern Checks whether or not the values in the column with the
given column_name match the given pattern.

10. Check Invalidity
Checks whether or not the values

in the column with the given column_name does not ex-
ist in the given list of values.

11. Check Length
Checks if the number of char-
acters

of the values in the column with the given
column_name

are equal to the required_length.
12. Check Range Checks whether or not the values in the column with the

given column_name are: - Greater than or equal to the
given lower_bound. - Less than or equal to the given
upper_bound.

13. Check Prefix Checks whether or not the values in the column with the
given column_name start with any of the given prefixes.

14. Check Unallowed Text Checks if values in the column with the given col-
umn_name

15. Check Uniqueness Checks whether the values in the column with the given
column_name are unique (duplicate value check).

16. Check Validity Checks whether or not the values in the column with the
given column_name exist in the given list of values.

80 Chapter 10. Data Quality

Aurelius Atlas Data Governance Solution, Release 0.1

10.3 Data Quality Rules and Examples

10.3.1 1. Bijacency

In this example, a dummy dataset is provided and the columns “id” and “name” are compared.

A dummy data set is seen in the code First run a test to see if the columns are bijacent. The columns “id” and “name”
are compared.

data = DataFrame([
{

"id": 1234,
"name": "John Doe",
"function": "Developer",
"from": "01-01-2021"

},
{

"id": 1234,
"name": "John Doe",
"function": "Senior developer",
"from": "01-01-2022"

}
])

result = bijacency(data, "id", "name")

This is the function that we are using: bijacency(df, “column_a”, “column_b”). The inputs are the dataset and the
column names. The id and name are the same in this example, which means they are bijacent. The output will be 1.

The source code to bijacency is available here

10.3.2 2. Compare First characters

Checks whether the first ‘number_of_characters ‘values in first_column_name and second_column_name are similar,
and if the values are None or NaN.

A dummy dataset is provided and the first two characters of the id and name will be compared.

data = DataFrame([
{

"id": "NL.xxx",
"name": "NL.xxx",

}
])

result = compare_first_characters(data, "id", "name", 2)

This is the function used in this example: compare_first_characters(df, “column_a”, “column_b”, num_char). The
inputs are the dataset,the column names and the number of characters.

The source code to compare_first_characters is available here

10.3.3 3. Check First Characters using Prefix

This rule does three checks. It checks if the first characters are the same, if the have same prefix and if the values are
Nan or none.

10.3. Data Quality Rules and Examples 81

https://github.com/AthanasiosAurelius/m4i-data-management/blob/Athanasios/m4i_data_management/core/quality/rules/bijacency/bijacency.py
https://github.com/AthanasiosAurelius/m4i-data-management/blob/Athanasios/m4i_data_management/core/quality/rules/compare_first_characters/compare_first_characters.py

Aurelius Atlas Data Governance Solution, Release 0.1

A dummy dataset with two columns, id and name is provided

data = DataFrame([
{

"id": "BE.xxx",
"name": "BE.xxx",

}])

result = compare_first_characters_starting_without(data, "id", "name", 2, 'BE
→˓')

A prefix BE is used and the function is compare_first_characters_starting_without(data, “id”, “name”, 2, ‘BE’) The
inputs are the data, the column names, the number of characters and the prefix. The output will be 1, because the
charaters are the same and have the prefix too.

The source code to compare_first_characters_starting_without is available here

10.3.4 4. Check Completeness

Checks whether the values in the column with the given column_name are None or NaN.

We provide a data dummy test in the unit test and we want to check if the column ‘name’ has a value or not. If it has
a value the function will return 1, otherwise it will return 0

data = DataFrame([
{

"id": 1234,
"name": NaN,
"function": "Developer",
"from": "01-01-2021"

}
])

result = completeness(data, "name")

The function is called completeness(df, “column”). The inputs are data and the name of the column we
want to check. The output will be 0, because the column ‘name’ has no value in it.

The source code to completeness is available here

10.3.5 5. Check Conditional Completeness

The columns “value” and “conditional” are ‘None’ or ‘NaN’. The rows are filtered, where the value of the
‘key_column’, is not a substring of the given value in the function. In this example the key column in “conditional”
and we are seeing if it has a substring of the list values.

values = ['.TMP', '.FREE']
['.TMP', '.FREE']

data = DataFrame([
{

"value": "Something",
"conditional": "xx.FREE.eur"

}
])

82 Chapter 10. Data Quality

https://github.com/AthanasiosAurelius/m4i-data-management/blob/Athanasios/m4i_data_management/core/quality/rules/compare_first_characters_starting_without/compare_first_characters_starting_without.py
https://github.com/AthanasiosAurelius/m4i-data-management/blob/Athanasios/m4i_data_management/core/quality/rules/completeness/completeness.py

Aurelius Atlas Data Governance Solution, Release 0.1

result = conditional_completeness(data, "conditional", "value", values)

This is the function of use conditional_completeness(df, “column_a”, “column_b”,[list]). The inputs are data, the
name of the columns and the list of given values. The output here will be 1, because they are no empty values in the
columns and the column “conditional” has substrings of the given values = [‘.TMP’, ‘.FREE’]

The source code to conditional_completeness is availabe here

10.3.6 6. Check Unallowed Text

The check here is to see if there is unalllowed text in the columns of the dummy dataframe.

values = ['.TMP', '.FREE']

unallowed_text_item = "("

data = DataFrame([
{

"value": "Something",
"conditional": "xx.FREE.eur"

}
])

result = conditional_unallowed_text(data, "conditional", "value", values,
→˓unallowed_text_item)

This is the function of use conditional_unallowed_text(df, “column_a”, “column_b”, [list_of_values], “string”). The
inputs are the dataframe, the name of the two columns, the values of the substrings and the unallowed text. The output
will be 1 because it containf substrings in the ‘conditional’ column and doesn’t contain the unallowed text in column
“Value”. If it did the output would be 0.

The source code to conditional_unallowed_text is available here

10.3.7 7. Check Conditional Value

The ‘value’ and ‘conditional’ column are being checked to see if it contains the expected values of the ‘key’ values
object.

values = {"xx.TMP": "XX No Grade"} (this is dictionary with it's key and
→˓value)

data = DataFrame([(this is our dummy dataset)
{

"value": "XX No Grade",
"conditional": "xx.TMP"

}
])

result = conditional_value(data, "conditional", "value", values)

the function used for this example is called conditional_value(df, “column_a”, “column_b”, {dictionary}). The inputs
are data of the dummy dataset, the names of the columns which are “value” and “conditional” and the values, that
are the substrings we want to check. The output here will 1, because “value” column, contains an expecetd value.
Otherwise it would be 0.

10.3. Data Quality Rules and Examples 83

https://github.com/AthanasiosAurelius/m4i-data-management/tree/Athanasios/m4i_data_management/core/quality/rules/conditional_completeness
https://github.com/AthanasiosAurelius/m4i-data-management/blob/Athanasios/m4i_data_management/core/quality/rules/conditional_unallowed_text/conditional_unallowed_text.py

Aurelius Atlas Data Governance Solution, Release 0.1

The source code to conditional_value is available here

10.3.8 8. Check Character Count

Checks how many times the values in the column with the given column_name contain a specific character.

A dummy dataframe is provided with one column called “id”.

data = DataFrame([
{

"id": "12.12"
}

])

result = contains_character(data, "id", ".", 1)

This is the function used in this example contains_character(df, “column”, “string”, int). The inputs are data, name
of the column, the character we want to check and 1 is the expected count The check performed here is to if the the id
contains “.” . The output will be 1 because the “id” column contains “.”

The source code to contains_character is available here

10.3.9 9. Check Matching Pattern

Checks if the values in the column name match the given pattern.

A dummy dataset is provided

data = DataFrame([
{

"name": 'ExampleText'
}

])

result = formatting(data, "name", r'^[a-zA-Z]+$')

This is the function used for this example formatting(df, “column”, expression_pattern). The inputs are the dataset,the
column “name” and the pattern to see if it matches The ouput will be 1 in this example, because ‘ExampleText’
matches the pattern.

The source code to formatting is available here

10.3.10 10. Check Invalidity

The values in the column with the given name value are checked if they do not exist in the given list of exampleValues.

A list of the example values and a dummy dataframe are provided.

exampleValues = ['x', 'X', 'TBD', 'Name']

data = DataFrame([
{

"value": "X"
}

])

84 Chapter 10. Data Quality

https://github.com/AthanasiosAurelius/m4i-data-management/blob/Athanasios/m4i_data_management/core/quality/rules/conditional_value/conditional_value.py
https://github.com/AthanasiosAurelius/m4i-data-management/blob/Athanasios/m4i_data_management/core/quality/rules/contains_character/contains_character.py
https://github.com/AthanasiosAurelius/m4i-data-management/blob/Athanasios/m4i_data_management/core/quality/rules/formatting/formatting.py

Aurelius Atlas Data Governance Solution, Release 0.1

result = invalidity(data, "value", exampleValues)

The funtion is invalidity(df, “column”, [list]). The inputs are data, column name and the list of values. The output
will be 1 , becaue “X” is in the list of values.

The source code to invalidity is available here

10.3.11 11. Check Length

The check performed here is the number of characters of the values in the column id are equal to the required_length.

A dummy dataframe with column name “id”

data = DataFrame([
{

"id": "1234"
}

])

result = length(data, "id", 4)

The function is length(df,”column”,int). The inputs are data, column name and the length of required characters. The
output is 1 because the length of id is 4.

The source code to length is available here

10.3.12 12. Check Range

The check performed here is the values in the column column_name are greater than or equal to the given lower_bound
or less than or equal to the given upper_bound.

A dummy dataframe for this example with column name “value”

data = DataFrame([
{

"value": 0.1
}

])

result = range(data, "value", 0, 1)

The function is range(df, “column”, int1, int2). The inputs are the dataframe, the column name and the range (The
upper and lower bound) The output will be 1 because 0.1 is between 0 and 1.

The source code to range is available here

10.3.13 13. Check Prefix

This example checks if the values in the column column_name start with any of the given prefixes.

data = DataFrame([
{

"id": 1234
}

10.3. Data Quality Rules and Examples 85

https://github.com/AthanasiosAurelius/m4i-data-management/blob/Athanasios/m4i_data_management/core/quality/rules/invalidity/invalidity.py
https://gitlab.com/m4i/m4i-data-management/-/blob/Athanasios/m4i_data_management/core/quality/rules/length/length.py
https://github.com/AthanasiosAurelius/m4i-data-management/blob/Athanasios/m4i_data_management/core/quality/rules/range/range.py

Aurelius Atlas Data Governance Solution, Release 0.1

])

result = starts_with(data, "id", "1")

The function is called starts_with(data, “column”, “prefix”). The inputs are the data the column name and the prefix.
The output is 1, because “1” is in the value of the id column.

The source code to starts_with is available here

10.3.14 14. Check Unallowed Text

This example checks if the values in the column Organisation contain a specific unallowed text.

A dummy dataset is provided.

data = DataFrame([
{

"Organisation": "Something Else"
}

])

result = unallowed_text(data, "Organisation", "BG Van Oord")

The function is called unallowed_text(df, “column”, “sting”). The inputs are data, the column name and the unallowed
text The output is 1 because “BG Van Oord” is not in the “Something Else” of the “Organisation” column.

The source code to unallowed_text is available here

10.3.15 15. Check Uniqueness

This example checks if the values in the column id are unique. It checks for duplicate values

A dummy dataset is provided

data = DataFrame([
{

"id": "1234"
},
{

"id": "1234"
},
{

"id": "2345"
}

])

result = uniqueness(data, "id")

The function is uniqueness(data, “id”). The inputs are the dataset and the name of the column. The output will be 0,
because the “id” column conatins duplicate values

The source code to uniqueness is available here

10.3.16 16. Check Validity

This example checks if the values in the column value exist in the list of exampleValues.

86 Chapter 10. Data Quality

https://github.com/AthanasiosAurelius/m4i-data-management/blob/Athanasios/m4i_data_management/core/quality/rules/starts_with/starts_with.py
https://github.com/AthanasiosAurelius/m4i-data-management/tree/Athanasios/m4i_data_management/core/quality/rules/unallowed_text
https://github.com/AthanasiosAurelius/m4i-data-management/blob/Athanasios/m4i_data_management/core/quality/rules/uniqueness/uniqueness.py

Aurelius Atlas Data Governance Solution, Release 0.1

The values in the example list and a dummy dataset are provided

exampleValues = ['Definite Contract', 'Indefinite Contract']

data = DataFrame([
{

"value": "Definite Contract"
}

])

result = validity(data, "value", exampleValues)

The function is validity(df, “key”,[list]). The inputs are data, the column name and the list of example values. The
output is 1, because the value of the column exists in the example list.

The source code to validity is available here

10.4 Apply Data Quality Results

The tool checks the quality of your data. To use it, you need to provide a csv file with your data and the rules you want
to apply to it. The rules are basically the type of checks you want to do on the attributes of your dataset. The rules you
want to define are stored, on Aurelius Atlas and is used to apply the rules to your data. The quality score of your data
is calculated based on the applied rules and the results are sent to a Kafka topic. Below is an image that describes the
whole process for your better understanding.

1. First upload a file, define the rules that we want to apply to the data. Then push this file to atlas.

2. Then get the data quality rules from atlas and see the data quality results. The quality results have a data quality
score. 1 is compiant and 0 is non-compliant

3. Finally push the data quality results to kafka.

10.4.1 How To Perform A Data Quality Check Of Your Data

Here is a link of the repositories you will need:

https://github.com/aureliusenterprise/m4i_atlas_core

10.4. Apply Data Quality Results 87

https://github.com/AthanasiosAurelius/m4i-data-management/blob/Athanasios/m4i_data_management/core/quality/rules/validity/validity.py
https://github.com/aureliusenterprise/m4i_atlas_core

Aurelius Atlas Data Governance Solution, Release 0.1

https://github.com/AthanasiosAurelius/m4i-data-management

10.4.2 Install M4I Data Management

This library contains all core functionality around data management.

Installation

Please ensure your Python environment is on version 3.7. Some dependencies do not work with any later versions of
Python.

To install m4i-data-management and all required dependencies to your active Python environment, please run the
following command from the project root folder:

To install m4i-data-management including development dependencies, please run the following command instead:

pip install -e .[dev]

Install m4i_data_management: You can clone m4i_data_management from this link https://github.com/
AthanasiosAurelius/m4i-data-management Then you install with this command

pip install {path to m4i_data_management}

Do the same for m4i_atlas_core

pip install {path to m4i_atlas_core}

Please make a copy of config.sample.py and credentials.sample.py and rename the files to config.py and credentials.py
respectively.

The config.py and credentials.py files should be located in the root folder of the project, or otherwise on the
PYTHON_PATH.

Please remember to set the configuration parameters you want to use.

10.4.3 How to set up config and credentials file

Here is the exact configuration of the config and credentials, use this to run the example.

config = {
"atlas_dataset_guid": "f686adca-00c4-4509-b73b-1c51ae597ebe",
"dataset_quality_name": "example_name",
"atlas": {

"atlas.server.url": "https://aureliusdev.westeurope.cloudapp.azure.com/anwo/
→˓atlas/atlas",

},
"keycloak.server.url": "https://aureliusdev.westeurope.cloudapp.azure.com/anwo/

→˓auth/",
"keycloak.client.id": "m4i_public",
"keycloak.realm.name": "m4i",
"keycloak.client.secret.key": ""

}

credentials = {
"keycloak.credentials.username": "atlas",
"keycloak.credentials.password": "",
"atlas.server.url":"https://aureliusdev.westeurope.cloudapp.azure.com/anwo/atlas/

→˓atlas",
"atlas.credentials.username":"atlas",

88 Chapter 10. Data Quality

https://github.com/AthanasiosAurelius/m4i-data-management
https://github.com/AthanasiosAurelius/m4i-data-management
https://github.com/AthanasiosAurelius/m4i-data-management

Aurelius Atlas Data Governance Solution, Release 0.1

"atlas.credentials.password":""
}

10.4.4 How to run data quality check

Our tool checks the quality of your data. To use it, you need to provide a csv file with your data and the rules you want
to apply to it. The rules are basically the type of checks you want to do on the attributes of your dataset. We store your
data and rules on Atlas and use our tool to apply the rules to your data. We then calculate the quality score of your
data based on the applied rules and provied a csv output with the results.

These are the steps on how to do it

1. In the run_quality_rules.py we can now run our check. We have to provide a dataset so we can do a quality
check. Fill in the path in the get_data_csv(). You will see it on line 63. Make a csv file with example data. Here
is a simple example below.

Just One Column named UID and provide a name. Make an excel file.

UID example_name

2. Finally we run our check in the run_quality_rules.py In debug mode run the ‘asyn-
cio.run(atlas_dataset_quality.run())’ it’s on line 59

10.4.5 How to create entities and relationships

In the create_push_to_atlas.py a user can create a dataset, field and data quality rule entity and push it to atlas. He can
create a relationship between the field and dataset. I will explain how to do it with an example.

1. Define the attributes for each instance

Define the attributes for the dataset instance

json_dataset={
"attributes": {

"name": "example",
"qualifiedName": "example100"

},
"typeName": "m4i_dataset"
}

Define the attributes for the field instance

json_field={
"attributes": {

"name": "field",
"qualifiedName": "example--field"

},
"typeName": "m4i_field",
"relationshipAttributes": {

"dataset": {
"guid": "<guid-of-json_dataset>",
"typeName": "m4i_dataset",
"relationshipType": "m4i_dataset_fields"

}
}

}

10.4. Apply Data Quality Results 89

Aurelius Atlas Data Governance Solution, Release 0.1

Define the attributes for the data quality instance

json_quality={
"attributes": {

"name": "field",
"qualifiedName": "example--quality",
"id": 1

},
"typeName": "m4i_data_quality"
}

2. Create instances

Create instances of BusinessDataset, BusinessField, and BusinessDataQuality

3. Add relationship between the field and dataset instances

field_attributes=field_instance.attributes
field_attributes.datasets= [ObjectId(

type_name="m4i_dataset",
unique_attributes= M4IAttributes(
qualified_name="example100"

)
)]

4. Push the entities to atlas.

We use the create_entities function that can be found in the m4i_atlas_core. It is important to undertstand what are
the inputs. create_entites(dataset_instance,referred_entites,accesss_token). The first input is the instance we created,
then the referred entities, which here are non because we are just creating an entity with no relationships and finally
the access token.

Push the dataset instance to Atlas

async def create_in_atlas(dataset,access_token=access_token):
mutations_dataset = await create_entities(dataset,referred_entities=None,

→˓access_token=access_token)
print(mutations_dataset)

push_to_atlas= asyncio.run(create_in_atlas(dataset_instance,access_
→˓token=access_token))

Push the field instance to Atlas

async def create_in_atlas_field(field,access_token=access_token):
mutations_field = await create_entities(field,field,referred_

→˓entities=None,access_token=access_token)
print(mutations_field)

push_field = asyncio.run(create_in_atlas_field(field_instance,access_
→˓token=access_token))

Push the data quality instance to Atlas

async def create_in_atlas_rule(rule,access_token=access_token):
mutations_rule = await create_entities(rule,referred_entities=None,

→˓access_token=access_token)
print(mutations_rule)

push_rule = asyncio.run(create_in_atlas_rule(rule,access_token=access_token))

90 Chapter 10. Data Quality

	What is Aurelius Atlas?
	Components of Aurelius Atlas Helm:
	What do I need to run the application?
	Integration Options

	Deployment options
	Azure Deploy Aurelius Atlas
	Google Deploy Aurelius Atlas
	How to deploy Aurelius Atlas with Docker Compose

	Technical description
	Aurelius Atlas Backup
	Apache Atlas backup
	Elasticsearch backup

	Demo environment
	Integrations
	Libraries
	Aurelius Atlas
	Models4Insight

	Support / Maintenance
	FAQS
	Contact
	User comunities

	About the company
	Data Quality
	Conceptual view
	Technical view
	Data Quality Rules and Examples
	Apply Data Quality Results

